Cite

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803-20. 10.1007/s00401-016-1545-1LouisDNPerryAReifenbergerGvonDeimling AFigarella-BrangerDCaveneeWKet alThe 2016 World Health Organization classification of tumors of the central nervous system: a summaryActa Neuropathol20161318032010.1007/s00401-016-1545-127157931Open DOISearch in Google Scholar

Czarnek N, Clark K, Peters KB, Mazurowski MA. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J Neurooncol 2017; 132: 55-62. 10.1007/s11060-016-2359-7CzarnekNClarkKPetersKBMazurowskiMAAlgorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional studyJ Neurooncol2017132556210.1007/s11060-016-2359-728074320Open DOISearch in Google Scholar

Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15: 455-65. 10.1038/ nrn3765CuddapahVARobelSWatkinsSSontheimerHA neurocentric perspective on glioma invasionNat Rev Neurosci2014154556510.1038/nrn3765Open DOISearch in Google Scholar

Roos A, Ding Z, Loftus JC, Tran NL. Molecular and microenvironmental determinants of glioma stem-like cell survival and invasion. Front Oncol 2017; 7: 120. 10.3389/fonc.2017.00120RoosADingZLoftusJCTranNLMolecular and microenvironmental determinants of glioma stem-like cell survival and invasionFront Oncol2017712010.3389/fonc.2017.00120547266128670569Open DOISearch in Google Scholar

Mentlein R, Hattermann K, Held-Feindt J. Lost in disruption: role of proteases in glioma invasion and progression. Biochim Biophys Acta 2012; 1825: 178-85. 10.1016/j.bbcan.2011.12.001MentleinRHattermannKHeld-FeindtJLost in disruption: role of proteases in glioma invasion and progressionBiochim Biophys Acta201218251788510.1016/j.bbcan.2011.12.00122209868Open DOISearch in Google Scholar

Colin, C, Voutsinos-Porche B, Nanni I, Fina F, Metellus P, Intagliata D, et al. High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol 2009; 118: 745-54. 10.1007/s00401-009-0592-2ColinCVoutsinos-PorcheBNanniIFinaFMetellusPIntagliataDet alHigh expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomasActa Neuropathol20091187455410.1007/s00401-009-0592-219774387Open DOISearch in Google Scholar

Gole B, Huszthy PC, Popović M, Jeruc J, Ardebili YS, Bjerkvig R, et al. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 2012; 131: 1779-89. 10.1002/ijc.27453GoleBHuszthyPCPopovićMJerucJArdebiliYSBjerkvigRet alThe regulation of cysteine cathepsins and cystatins in human gliomasInt J Cancer201213117798910.1002/ijc.2745322287159Open DOISearch in Google Scholar

Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 2015; 15: 712-29. 10.1038/nrc4027OlsonOCJoyceJACysteine cathepsin proteases: regulators of cancer progression and therapeutic responseNat Rev Cancer2015157122910.1038/nrc402726597527Open DOISearch in Google Scholar

Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis 2011; 16: 671-82. 10.1007/s10495-011-0600-6KenigSFrangežRPucerALahTInhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7Apoptosis2011166718210.1007/s10495-011-0600-621484410Open DOISearch in Google Scholar

Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH, De Porto AP, et al. Cathepsin L, target in cancer treatment? Life Sci 2010; 86: 225-33. 10.1016/j.lfs.2009.11.016LankelmaJMVoorendDMBarwariTKoetsveldJVan derSpek AHDePorto APet alCathepsin L, target in cancer treatment? Life Sci2010862253310.1016/j.lfs.2009.11.01619958782Open DOISearch in Google Scholar

Breznik B, Motaln H, Turnšek TL. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem 2017; 398: 709-19. 10.1515/hsz-2016-0283BreznikBMotalnHTurnšekTLProteases and cytokines as mediators of interactions between cancer and stromal cells in tumoursBiol Chem20173987091910.1515/hsz-2016-028328002021Open DOISearch in Google Scholar

Kramer L, Turk D, Turk B. The future of cysteine cathepsins in disease management. Trends Pharmacol Sci 2017; 38: 873-98. 10.1016/j. tips.2017.06.003KramerLTurkDTurkBThe future of cysteine cathepsins in disease managementTrends Pharmacol Sci2017388739810.1016/j.tips.2017.06.003Open DOISearch in Google Scholar

López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007; 7: 800-8. 10.1038/nrc2228López-OtínCMatrisianLMEmerging roles of proteases in tumour suppressionNat Rev Cancer20077800810.1038/nrc222817851543Open DOISearch in Google Scholar

Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31: 326-41. 10.1016/j.ccell.2017.02.009QuailDFJoyceJAThe microenvironmental landscape of brain tumorsCancer Cell2017313264110.1016/j.ccell.2017.02.009542426328292436Open DOISearch in Google Scholar

Lah TT, Duran Alonso MB, Van Noorden CF. Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 2006; 6: 257-79. 10.1517/14712598.6.3.257LahTTDuranAlonso MBVanNoorden CFAntiprotease therapy in cancer: hot or not?Expert Opin Biol Ther200662577910.1517/14712598.6.3.25716503735Open DOISearch in Google Scholar

Lah TT, Obermajer N, Duran Alonso MB, Kos J. Cysteine cathepsins and cystatins as cancer biomarkers. In: Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF, editors. The cancer degradome: proteases and cancer biology New York: Springer; 2008. p. 575-613.LahTTObermajerNDuranAlonso MBKosJCysteine cathepsins and cystatins as cancer biomarkersEdwards D, Hoyer-Hansen G, Blasi F, Sloane BF, editors. The cancer degradome: proteases and cancer biologyNew YorkSpringer2008575613Search in Google Scholar

Flannery T, McQuaid S, McGoohan C, McConnell RS, McGregor G, Mirakhur M, et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours - a pilot study. Int J Cancer 2006; 119: 854-60. 10.1002/ijc.21911FlanneryTMcQuaidSMcGoohanCMcConnellRSMcGregorGMirakhurMet alCathepsin S expression: an independent prognostic factor in glioblastoma tumours - a pilot studyInt J Cancer20061198546010.1002/ijc.2191116550604Open DOISearch in Google Scholar

Verbovšek U, Motaln H, Rotter A, Atai NA, Gruden K, Van Noorden CJ, et al. Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma PLoS One 2014; 9: e111819. 10.1371/ journal.pone.0111819VerbovšekUMotalnHRotterAAtaiNAGrudenKVanNoorden CJet alExpression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma PLoS One20149e11181910.1371/journal.pone.0111819Open DOISearch in Google Scholar

Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: cathepsin K expression and function in cancer progression. Semin Cancer Biol 2015; 35: 71-84. 10.1016/j.semcancer.2015.08.010VerbovšekUVanNoorden CJLahTTComplexity of cancer protease biology: cathepsin K expression and function in cancer progressionSemin Cancer Biol201535718410.1016/j.semcancer.2015.08.01026320409Open DOISearch in Google Scholar

Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem 2013; 394: 1163-79. 10.1515/hsz-2013-0134NovinecMLenarčičBCathepsin K: a unique collagenolytic cysteine peptidaseBiol Chem201339411637910.1515/hsz-2013-013423629523Open DOISearch in Google Scholar

Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 2012; 21: 1924-35. 10.1089/scd.2011.0307StaudtNDMaurerASpringBKalbacherHAicherWKKleinGProcessing of CXCL12 by different osteoblast-secreted cathepsinsStem Cells Dev20122119243510.1089/scd.2011.0307339614222066471Open DOISearch in Google Scholar

Hira VV, Verbovšek U, Breznik B, Srdič M, Novinec M, Kakar H, et al. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells. Biochim Biophys Acta 2017; 1864: 594-603. 10.1016/j.bbamcr.2016.12.021HiraVVVerbovšekUBreznikBSrdičMNovinecMKakarHet alCathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cellsBiochim Biophys Acta2017186459460310.1016/j.bbamcr.2016.12.02128040478Open DOISearch in Google Scholar

Kos J, Vižin T, Fonović UP, Pišlar A. Intracellular signaling by cathepsin X: molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31: 76-83. 10.1016/j.semcancer.2014.05.001KosJVižinTFonovićUPPišlarAIntracellular signaling by cathepsin X: molecular mechanisms and diagnostic and therapeutic opportunities in cancerSemin Cancer Biol201531768310.1016/j.semcancer.2014.05.00124835450Open DOISearch in Google Scholar

Kos J, Jevnikar Z, Obermajer N. The role of cathepsin X in cell signaling. Cell Adh Migr 2009; 3: 164-6.KosJJevnikarZObermajerNThe role of cathepsin X in cell signalingCell Adh Migr20093164610.4161/cam.3.2.7403267987619262176Search in Google Scholar

Wendt W, Zhu XR, Lübbert H, Stichel CC. Differential expression of cathepsin X in aging and pathological central nervous system of mice. Exp Neurol 2007; 204: 525-40. 10.1016/j.expneurol.2007.01.007WendtWZhuXRLübbertHStichelCCDifferential expression of cathepsin X in aging and pathological central nervous system of miceExp Neurol20072045254010.1016/j.expneurol.2007.01.00717306794Open DOISearch in Google Scholar

Nägler DK, Krüger S, Kellner A, Ziomek E, Menard R, Buhtz P, et al. Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia. Prostate 2004; 60: 109-19. 10.1002/pros.20046NäglerDKKrügerSKellnerAZiomekEMenardRBuhtzPet alUp-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasiaProstate2004601091910.1002/pros.2004615162377Open DOISearch in Google Scholar

Krueger S, Kalinski T, Hundertmark T, Wex T, Küster D, Peitz U, et al. Up-regulation of cathepsin X in Helicobacter pylori gastritis and gastric cancer. J Pathol 2005; 207: 32-42. 10.1002/path.1820KruegerSKalinskiTHundertmarkTWexTKüsterDPeitzUet alUp-regulation of cathepsin X in Helicobacter pylori gastritis and gastric cancerJ Pathol2005207324210.1002/path.182016025436Open DOISearch in Google Scholar

Vizin T, Christensen IJ, Nielsen HJ, Kos J. Cathepsin X in serum from patients with colorectal cancer: relation to prognosis. Radiol Oncol 2012; 46: 207-12. 10.2478/v10019-012-0040-0VizinTChristensenIJNielsenHJKosJCathepsin X in serum from patients with colorectal cancer: relation to prognosisRadiol Oncol2012462071210.2478/v10019-012-0040-0347294923077459Open DOISearch in Google Scholar

Gopinath S, Malla R, Alapati K, Gorantla B, Gujrati M, Dinh DH, et al. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis 2013; 34: 550-9. 10.1093/carcin/bgs375GopinathSMallaRAlapatiKGorantlaBGujratiMDinhDHet alCathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expressionCarcinogenesis201334550910.1093/carcin/bgs375358160123222817Open DOISearch in Google Scholar

Alapati K, Kesanakurti D, Rao JS, Dasari VR. uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Res 2014; 12: 716-29. 10.1016/j.scr.2014.02.008AlapatiKKesanakurtiDRaoJSDasariVRuPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cellsStem Cell Res2014127162910.1016/j.scr.2014.02.008406161724699410Open DOISearch in Google Scholar

Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203-17. 10.1101/ gad.261982.115LathiaJDMackSCMulkearns-HubertEEValentimCLRichJNCancer stem cells in glioblastomaGenes Dev20152912031710.1101/gad.261982.115Open DOISearch in Google Scholar

Godlewski J, Ferrer-Luna R, Rooj AK, Mineo M, Ricklefs F, Takeda YS, et al. MicroRNA Signatures and molecular subtypes of glioblastoma: the role of extracellular transfer. Stem Cell Reports 2017; 8: 1497-505. 10.1016/j. stemcr.2017.04.024GodlewskiJFerrer-LunaRRoojAKMineoMRicklefsFTakedaYSet alMicroRNA Signatures and molecular subtypes of glioblastoma: the role of extracellular transferStem Cell Reports20178149750510.1016/j.stemcr.2017.04.024Open DOISearch in Google Scholar

Hira VV, Ploegmakers KJ, Grevers F, Verbovšek U, Silvestre-Roig C, Aronica E, et al. CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J Histochem Cytochem 2015; 63: 481-93. 10.1369/0022155415581689HiraVVPloegmakersKJGreversFVerbovšekUSilvestre-RoigCAronicaEet alCD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin KJ Histochem Cytochem2015634819310.1369/002215541558168925809793Open DOISearch in Google Scholar

Hira VVV, Aderetti DA, van Noorden CJF. Glioma stem cell niches in human glioblastoma are periarteriolar. J Histochem Cytochem 2018; 66: 349-58. 10.1369/0022155417752676HiraVVVAderettiDAvanNoorden CJFGlioma stem cell niches in human glioblastoma are periarteriolarJ Histochem Cytochem2018663495810.1369/0022155417752676595835529328867Open DOISearch in Google Scholar

Hira VVV, Wormer JR, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar glioblastoma stem cell niches express bone marrow hematopoietic stem cell niche proteins. J Histochem Cytochem 2018; 66: 155-73. 10.1369/0022155417749174HiraVVVWormerJRKakarHBreznikBvan derSwaan BHulsbosRet alPeriarteriolar glioblastoma stem cell niches express bone marrow hematopoietic stem cell niche proteinsJ Histochem Cytochem2018661557310.1369/0022155417749174583317729297738Open DOISearch in Google Scholar

GlioVis: Data visualization tools for brain tumor datasets. 2017. [citated 20 Sep 2017]. Available from: http://gliovis.bioinfo.cnio.es/GlioVis: Data visualization tools for brain tumor datasets2017[citated 20 Sep 2017]. Available fromhttp://gliovis.bioinfo.cnio.es/Search in Google Scholar

Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol 2017; 19: 139-41. 10.1093/neuonc/now247BowmanRLWangQCarroAVerhaakRGSquatritoMGlioVis data portal for visualization and analysis of brain tumor expression datasetsNeuro Oncol2017191394110.1093/neuonc/now247519303128031383Open DOISearch in Google Scholar

Završnik J, Butinar M, Trstenjak Prebanda M, Krajnc A, Vidmar R, Fonović M, et al. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017; 8: 73793-809. 10.18632/oncotarget.17379ZavršnikJButinarMTrstenjakPrebanda MKrajncAVidmarRFonovićMet alCystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cellsOncotarget201787379380910.18632/oncotarget.17379565030129088746Open DOISearch in Google Scholar

Chieco P, Jonker A, De Boer BA, Ruijter JM, Van Noorden CJ. Image cytometry: protocols for 2D and 3D quantification in microscopic images. Prog Histochem Cytochem 2013; 47: 211-333. 10.1016/j.proghi.2012.09.001ChiecoPJonkerADeBoer BARuijterJMVanNoorden CJImage cytometry: protocols for 2D and 3D quantification in microscopic imagesProg Histochem Cytochem20134721133310.1016/j.proghi.2012.09.00123146330Open DOISearch in Google Scholar

Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y, et al. Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transition. Cell Rep 2016; 17: 29943009. 10.1016/j.celrep.2016.11.056SegermanANiklassonMHaglundCBergströmTJarviusMXieYet alClonal variation in drug and radiation response among glioma-initiating cells is linked to proneural-mesenchymal transitionCell Rep2016172994300910.1016/j.celrep.2016.11.05627974212Open DOISearch in Google Scholar

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98-110. 10.1016/j.ccr.2009.12.020VerhaakRGHoadleyKAPurdomEWangVQiYWilkersonMDet alCancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1Cancer Cell2010179811010.1016/j.ccr.2009.12.020281876920129251Open DOISearch in Google Scholar

Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14: 123-9. 10.1158/1078-0432.CCR-07-0932ZeppernickFAhmadiRCamposBDictusCHelmkeBMBeckerNet alStem cell marker CD133 affects clinical outcome in glioma patientsClin Cancer Res200814123910.1158/1078-0432.CCR-07-093218172261Open DOISearch in Google Scholar

Kenig S, Alonso MB, Mueller MM, Lah TT. Glioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumour invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9. Cancer Lett 2010; 289: 53-61. 10.1016/j.canlet.2009.07.014KenigSAlonsoMBMuellerMMLahTTGlioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumour invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9Cancer Lett2010289536110.1016/j.canlet.2009.07.01419700239Open DOISearch in Google Scholar

Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16: 225-38. 10.1016/j.stem.2015.02.015PlaksVKongNWerbZThe cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell2015162253810.1016/j.stem.2015.02.015435557725748930Open DOISearch in Google Scholar

Saito K, Hirai T, Takeshima H, Kadota Y, Yamashita S, Ivanova A, Yokogami K. Genetic factors affecting intraoperative 5-aminolevulinic acid-induced fluorescence of diffuse gliomas. Radiol Oncol 2017; 51:142-50. 10.1515/ raon-2017-0019SaitoKHiraiTTakeshimaHKadotaYYamashitaSIvanovaAYokogamiKGenetic factors affecting intraoperative 5-aminolevulinic acid-induced fluorescence of diffuse gliomasRadiol Oncol2017511425010.1515/raon-2017-0019Open DOISearch in Google Scholar

Strojnik T, Kos J, Zidanik B, Golouh R, Lah T. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res 1999; 5: 559-67.StrojnikTKosJZidanikBGolouhRLahTCathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumorsClin Cancer Res1999555967Search in Google Scholar

Strojnik T, Kavalar R, Trinkaus M, Lah TT. Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 2005; 29: 448-55. 10.1016/j.cdp.2005.07.006StrojnikTKavalarRTrinkausMLahTTCathepsin L in glioma progression: comparison with cathepsin BCancer Detect Prev2005294485510.1016/j.cdp.2005.07.00616183211Open DOISearch in Google Scholar

Dauth S, Schmidt MM, Rehders M, Dietz F, Kelm S, Dringen R, et al. Characterisation and metabolism of astroglia-rich primary cultures from cathepsin K-deficient mice. Biol Chem 2012; 393: 959-70. 10.1515/ hsz-2012-0145DauthSSchmidtMMRehdersMDietzFKelmSDringenRet alCharacterisation and metabolism of astroglia-rich primary cultures from cathepsin K-deficient miceBiol Chem20123939597010.1515/hsz-2012-0145Open DOISearch in Google Scholar

Dauth S, Sîrbulescu RF, Jordans S, Rehders M, Avena L, Oswald J, et al. Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci 2011; 12: 74. 10.1186/1471-2202-12-74DauthSSîrbulescuRFJordansSRehdersMAvenaLOswaldJet alCathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficitsBMC Neurosci2011127410.1186/1471-2202-12-74319987521794126Open DOISearch in Google Scholar

Wang J, Chen L, Li Y, Guan XY. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. PLoS One 2011; 6: e24967. 10.1371/journal. pone.0024967WangJChenLLiYGuanXYOverexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinomaPLoS One20116e2496710.1371/journal.pone.0024967Open DOISearch in Google Scholar

Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Müller S, et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci US A 2010; 107: 2497-502. 10.1073/pnas.0907240107SevenichLSchurigtUSachseKGajdaMWernerFMüllerSet alSynergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in miceProc Natl Acad Sci US A2010107249750210.1073/pnas.0907240107282391420133781Open DOISearch in Google Scholar

Mitrović A, Pečar Fonović U, Kos J. Cysteine cathepsins B and X promote epithelial-mesenchymal transition of tumor cells. Eur J Cell Biol 2017; 96: 622-31. 10.1016/j.ejcb.2017.04.003MitrovićAPečarFonović UKosJCysteine cathepsins B and X promote epithelial-mesenchymal transition of tumor cellsEur J Cell Biol2017966223110.1016/j.ejcb.2017.04.00328495172Open DOISearch in Google Scholar

Akkari L, Gocheva V, Kester JC, Hunter KE, Quick ML, Sevenich L, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 2014; 28: 2134-50. 10.1101/gad.249599.114AkkariLGochevaVKesterJCHunterKEQuickMLSevenichLet alDistinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrixGenes Dev20142821345010.1101/gad.249599.114418097525274726Open DOISearch in Google Scholar

Euskirchen P, Radke J, Schmidt MS, Schulze Heuling E, Kadikowski E, Maricos M, et al. Cellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastoma. PLoS One 2017; 12: e0185376. 10.1371/journal.pone.0185376EuskirchenPRadkeJSchmidtMSSchulzeHeuling EKadikowskiEMaricosMet alCellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastomaPLoS One201712e018537610.1371/journal.pone.0185376561276328945795Open DOISearch in Google Scholar

Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69-82. 10.1016/j.ccr.2006.11.020CalabreseCPoppletonHKocakMHoggTLFullerCHamnerBet alA perivascular niche for brain tumor stem cellsCancer Cell200711698210.1016/j.ccr.2006.11.02017222791Open DOISearch in Google Scholar

Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG, Hamm LL, et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 2011; 71: 6061-72. 10.1158/0008-5472.CAN-10-4269ZhuTSCostelloMATalsmaCEFlackCGCrowleyJGHammLLet alEndothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cellsCancer Res20117160617210.1158/0008-5472.CAN-10-4269335547621788346Open DOISearch in Google Scholar

Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol 2017; 19: 66-77. 10.1093/neuonc/now136GoffartNLombardALallemandFKroonenJNassenJDiValentin Eet alCXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zoneNeuro Oncol201719667710.1093/neuonc/now136519302327370398Open DOISearch in Google Scholar

Ardebili SY, Zajc I, Gole B, Campos B, Herold-Mende C, Drmota S, et al. CD133/prominin1 is prognostic for GBM patient’s survival, but inversely correlated with cysteine cathepsins’ expression in glioblastoma derived spheroids. Radiol Oncol 2011; 45: 102-15. 10.2478/v10019-011-0015-6ArdebiliSYZajcIGoleBCamposBHerold-MendeCDrmotaSet alCD133/prominin1 is prognostic for GBM patient’s survival, but inversely correlated with cysteine cathepsins’ expression in glioblastoma derived spheroidsRadiol Oncol2011451021510.2478/v10019-011-0015-6342373122933943Open DOISearch in Google Scholar

Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006 ;12: 657–64. 10.1038/ nm1417KolletODarAShivtielSKalinkovichALapidKSztainbergYet alOsteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cellsNat Med2006126576410.1038/nm1417Open DOISearch in Google Scholar

MEROPS database: The peptidase database. [15 Dec 2017]. Citated https://www.ebi.ac.uk/merops/index.shtml.MEROPS database: The peptidase database. [15 Dec 2017]. Citatedhttps://www.ebi.ac.uk/merops/index.shtmlSearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology