Open Access

Perfusion magnetic resonance imaging changes in normal appearing brain tissue after radiotherapy in glioblastoma patients may confound longitudinal evaluation of treatment response


Cite

Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J 2014; 32: 103-15. 10.3857/roj.2014.32.3.103KimJHJenrowKABrownSL.Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trialsRadiat Oncol J2014321031510.3857/roj.2014.32.3.103Open DOISearch in Google Scholar

Price RE, Langford LA, Jackson EF, Stephens LC, Tinkey PT, Ang KK. Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brain. J Med Primatol 2001; 30: 81-7. 10.1034/j.1600-0684.2001.300202.xPriceRELangfordLAJacksonEFStephensLCTinkeyPTAngKK.Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brainJ Med Primatol20013081710.1034/j.1600-0684.2001.300202.xOpen DOISearch in Google Scholar

Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am 2009; 19: 657-68. 10.1016/j.nic.2009.08.014SundgrenPCCaoY.Brain irradiation: effects on normal brain parenchyma and radiation injuryNeuroimaging Clin N Am2009196576810.1016/j.nic.2009.08.014Open DOISearch in Google Scholar

Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol 2012; 2: 73. 10.3389/fonc.2012.00073Greene-SchloesserDRobbinsMEPeifferAMShawEGWheelerKTChanMD.Radiation-induced brain injury: a reviewFront Oncol201227310.3389/fonc.2012.00073Open DOISearch in Google Scholar

Cao Y, Tsien CI, Sundgren PC, Nagesh V, Normolle D, Buchtel H, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clin Cancer Res 2009; 15: 1747-54. 10.1158/1078-0432.CCR-08-1420CaoYTsienCISundgrenPCNageshVNormolleDBuchtelHDynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunctionClin Cancer Res20091517475410.1158/1078-0432.CCR-08-1420Open DOISearch in Google Scholar

Adair JC, Baldwin N, Kornfeld M, Rosenberg GA. Radiation-induced blood-brain barrier damage in astrocytoma: relation to elevated gelatinase B and urokinase. J Neurooncol 1999; 44: 283-9.AdairJCBaldwinNKornfeldMRosenbergGA.Radiation-induced blood-brain barrier damage in astrocytoma: relation to elevated gelatinase B and urokinaseJ Neurooncol199944283910.1023/A:1006337912345Search in Google Scholar

Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 2000; 48: 53-8. 10.1016/S0360-3016(00)00590-3FussMWenzFScholdeiREssigMDebusJKnoppMVRadiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrenceInt J Radiat Oncol Biol Phys20004853810.1016/S0360-3016(00)00590-3Open DOISearch in Google Scholar

Jakubovic R, Sahgal A, Ruschin M, Pejovic-Milic A, Milwid R, Aviv RI. Non tumor perfusion changes following stereotactic Radiosurgery to brain metastases. Technol Cancer Res Treat 2014. 10.7785/tcrtex-press.2013.600279JakubovicRSahgalARuschinMPejovic-MilicAMilwidRAvivRI.Non tumor perfusion changes following stereotactic Radiosurgery to brain metastasesTechnol Cancer Res Treat201410.7785/tcrtex-press.2013.600279Open DOISearch in Google Scholar

Lee MC, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 2005; 21: 683-93. 10.1002/jmri.20298LeeMCChaSChangSMNelsonSJ.Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phasesJ Magn Reson Imaging2005216839310.1002/jmri.2029815906330Open DOISearch in Google Scholar

Petr J, Platzek I, Seidlitz A, Mutsaerts HJ, Hofheinz F, Schramm G, et al. Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. Radiother Oncol 2016; 118: 24-8. 10.1016/j.radonc.2015.12.017PetrJPlatzekISeidlitzAMutsaertsHJHofheinzFSchrammGEarly and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRIRadiother Oncol201611824810.1016/j.radonc.2015.12.01726747756Open DOISearch in Google Scholar

Price SJ, Jena R, Green HA, Kirkby NF, Lynch AG, Coles CE, et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. Clin Oncol (R Coll Radiol) 2007; 19: 577-87. 10.1016/j.clon.2007.04.010PriceSJJenaRGreenHAKirkbyNFLynchAGColesCEEarly radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusionClin Oncol (R Coll Radiol)2007195778710.1016/j.clon.2007.04.01017629467Open DOISearch in Google Scholar

Taki S, Higashi K, Oguchi M, Tamamura H, Tsuji S, Ohta K, et al. Changes in regional cerebral blood flow in irradiated regions and normal brain after stereotactic radiosurgery. Ann Nucl Med 2002; 16: 273-7.TakiSHigashiKOguchiMTamamuraHTsujiSOhtaKChanges in regional cerebral blood flow in irradiated regions and normal brain after stereotactic radiosurgeryAnn Nucl Med200216273710.1007/BF0300010612126097Search in Google Scholar

Weber MA, Gunther M, Lichy MP, Delorme S, Bongers A, Thilmann C, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003; 38: 712-8. 10.1097/01.rli.0000084890.57197.54WeberMAGuntherMLichyMPDelormeSBongersAThilmannCComparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissueInvest Radiol200338712810.1097/01.rli.0000084890.57197.5414566181Open DOISearch in Google Scholar

Wenz F, Rempp K, Hess T, Debus J, Brix G, Engenhart R, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 1996; 166: 187-93. 10.2214/ajr.166.1.8571873WenzFRemppKHessTDebusJBrixGEngenhartREffect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imagingAJR Am J Roentgenol19961661879310.2214/ajr.166.1.85718738571873Open DOISearch in Google Scholar

Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008; 249: 601-13. 10.1148/radiol.2492071659PaulsonESSchmaindaKM.Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumorsRadiology20082496011310.1148/radiol.2492071659265786318780827Open DOISearch in Google Scholar

Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjornerud A, Vangel MG, Gerstner ER, et al.Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 2015; 8: 137-46. 10.1016/j.tranon.2015.03.002Jafari-KhouzaniKEmblemKEKalpathy-CramerJBjornerudAVangelMGGerstnerERRepeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patientsTransl Oncol201581374610.1016/j.tranon.2015.03.002448673726055170Open DOISearch in Google Scholar

Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008; 247: 490-8. 10.1148/radiol.2472070898LawMYoungRJBabbJSPeccerelliNChheangSGruberMLGliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imagingRadiology2008247490810.1148/radiol.2472070898377410618349315Open DOISearch in Google Scholar

Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 2009; 19: 527-57. 10.1016/j.nic.2009.08.007LacerdaSLawM.Magnetic resonance perfusion and permeability imaging in brain tumorsNeuroimaging Clin N Am2009195275710.1016/j.nic.2009.08.00719959004Open DOISearch in Google Scholar

Jarnum H, Steffensen EG, Knutsson L, Frund ET, Simonsen CW, Lundbye-Christensen S, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010; 52: 307-17. 10.1007/s00234-009-0616-6JarnumHSteffensenEGKnutssonLFrundETSimonsenCWLundbye-ChristensenSPerfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imagingNeuroradiology2010523071710.1007/s00234-009-0616-6283640419841916Open DOISearch in Google Scholar

Choi SH, Jung SC, Kim KW, Lee JY, Choi Y, Park SH, et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J Neurooncol 2016; 128: 185-94. 10.1007/s11060-016-2102-4ChoiSHJungSCKimKWLeeJYChoiYParkSHPerfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysisJ Neurooncol20161281859410.1007/s11060-016-2102-427108275Open DOISearch in Google Scholar

Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 2012; 70: 234-43; discussion 43-4. 10.1227/NEU.0b013e318223f5a7VogelbaumMAJostSAghiMKHeimbergerABSampsonJHWenPYApplication of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working GroupNeurosurgery20127023443discussion 43-410.1227/NEU.0b013e318223f5a7Open DOISearch in Google Scholar

Tensaouti F, Khalifa J, Lusque A, Plas B, Lotterie JA, Berry I, et al. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma. Neuroradiology 2017; 59: 1013-20. 10.1007/s00234-017-1899-7TensaoutiFKhalifaJLusqueAPlasBLotterieJABerryIResponse Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastomaNeuroradiology20175910132010.1007/s00234-017-1899-7Open DOISearch in Google Scholar

Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 2010; 30: 1066-78. Epub 2010/01/21. 10.1038/jcbfm.2010.4BjornerudAEmblemKE.A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRIJ Cereb Blood Flow Metab201030106678Epub 2010/01/2110.1038/jcbfm.2010.4Open DOISearch in Google Scholar

Knutsson L, Stahlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010; 23: 1-21. 10.1007/s10334-009-0190-2KnutssonLStahlbergFWirestamR.Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilitiesMAGMA20102312110.1007/s10334-009-0190-2Open DOISearch in Google Scholar

Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-31. 10.1002/mrm.20759MouridsenKChristensenSGyldenstedLOstergaardL.Automatic selection of arterial input function using cluster analysisMagn Reson Med2006555243110.1002/mrm.20759Open DOISearch in Google Scholar

Petersen ET, Zimine I, Ho YC, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006; 79: 688-701. 10.1259/bjr/67705974PetersenETZimineIHoYCGolayX.Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniquesBr J Radiol20067968870110.1259/bjr/67705974Open DOISearch in Google Scholar

Emblem KE, Bjornerud A. An automatic procedure for normalization of cerebral blood volume maps in dynamic susceptibility contrast-based glioma imaging. AJNR Am J Neuroradiol 2009; 30: 1929-32. 10.3174/ajnr.A1680EmblemKEBjornerudA.An automatic procedure for normalization of cerebral blood volume maps in dynamic susceptibility contrast-based glioma imagingAJNR Am J Neuroradiol20093019293210.3174/ajnr.A1680Open DOISearch in Google Scholar

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-96. 10.1056/NEJMoa043330StuppRMasonWPvan den BentMJWellerMFisherBTaphoornMJRadiotherapy plus concomitant and adjuvant temozolomide for glioblastomaN Engl J Med20053529879610.1056/NEJMoa043330Open DOISearch in Google Scholar

Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 2005; 22: 710-7. 10.1002/jmri.20460OstergaardL.Principles of cerebral perfusion imaging by bolus trackingJ Magn Reson Imaging200522710710.1002/jmri.20460Open DOISearch in Google Scholar

Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Rohl L, Bjornerud A, Gyldensted C. CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 1999; 9: 342-7. 10.1002/(SICI)1522-2586(199902)9:2<342::AID-JMRI29>3.0.CO;2-BSimonsenCZOstergaardLVestergaard-PoulsenPRohlLBjornerudAGyldenstedC.CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based valuesJ Magn Reson Imaging19999342710.1002/(SICI)1522-2586(199902)9:2<342::AID-JMRI29>3.0.CO;2-BOpen DOISearch in Google Scholar

Emblem KE, Bjornerud A, Mouridsen K, Borra RJ, Batchelor TT, Jain RK, et al. T(1)- and T(2)()-dominant extravasation correction in DSC-MRI: part II-predicting patient outcome after a single dose of cediranib in recurrent glioblastoma patients. J Cereb Blood Flow Metab 2011; 31: 2054-64. 10.1038/jcbfm.2011.39EmblemKEBjornerudAMouridsenKBorraRJBatchelorTTJainRKT(1)- and T(2)()-dominant extravasation correction in DSC-MRI: part II-predicting patient outcome after a single dose of cediranib in recurrent glioblastoma patientsJ Cereb Blood Flow Metab20113120546410.1038/jcbfm.2011.39320814721505476Open DOISearch in Google Scholar

Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 1996; 36: 726-36. 10.1002/mrm.1910360511OstergaardLSorensenAGKwongKKWeisskoffRMGyldenstedCRosenBR.High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary resultsMagn Reson Med1996367263610.1002/mrm.19103605118916023Open DOISearch in Google Scholar

Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237-47. 10.1002/mrm.10643CalamanteFGadianDGConnellyA.Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularizationMagn Reson Med20035012374710.1002/mrm.1064314648572Open DOISearch in Google Scholar

Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-67.BoxermanJLSchmaindaKMWeisskoffRM.Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do notAJNR Am J Neuroradiol20062785967Search in Google Scholar

Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A. Automatic vessel removal in gliomas from dynamic susceptibility contrast imaging. Magn Reson Med 2009; 61: 1210-7. 10.1002/mrm.21944EmblemKEDue-TonnessenPHaldJKBjornerudA.Automatic vessel removal in gliomas from dynamic susceptibility contrast imagingMagn Reson Med2009611210710.1002/mrm.2194419253390Open DOISearch in Google Scholar

Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010; 29: 196-205. 10.1109/TMI.2009.2035616KleinSStaringMMurphyKViergeverMAPluimJP.Elastix: a toolbox for intensity-based medical image registrationIEEE Trans Med Imaging20102919620510.1109/TMI.2009.203561619923044Open DOISearch in Google Scholar

White CM, Pope WB, Zaw T, Qiao J, Naeini KM, Lai A, et al. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. J Neuroimaging 2014; 24: 23-30. 10.1111/j.1552-6569.2012.00703.xWhiteCMPopeWBZawTQiaoJNaeiniKMLaiARegional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumorsJ Neuroimaging201424233010.1111/j.1552-6569.2012.00703.x22672084Open DOISearch in Google Scholar

Jonsson C, Pagani M, Johansson L, Thurfjell L, Jacobsson H, Larsson SA. Reproducibility and repeatability of 99Tcm-HMPAO rCBF SPET in normal subjects at rest using brain atlas matching. Nucl Med Commun 2000; 21: 9-18.JonssonCPaganiMJohanssonLThurfjellLJacobssonHLarssonSA.Reproducibility and repeatability of 99Tcm-HMPAO rCBF SPET in normal subjects at rest using brain atlas matchingNucl Med Commun20002191810.1097/00006231-200001000-0000410717897Search in Google Scholar

Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 2003; 63: 5950-6.LiYQChenPHaimovitz-FriedmanAReillyRMWongCS.Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiationCancer Res20036359506Search in Google Scholar

Lyubimova N, Hopewell JW. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 2004; 77: 488-92. 10.1259/bjr/15169876LyubimovaNHopewellJW.Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injuryBr J Radiol2004774889210.1259/bjr/1516987615151969Open DOISearch in Google Scholar

Cao Y, Tsien CI, Shen Z, Tatro DS, Ten Haken R, Kessler ML, et al. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J Clin Oncol 2005; 23: 4127-36. 10.1200/JCO.2005.07.144CaoYTsienCIShenZTatroDSTen HakenRKesslerMLUse of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapyJ Clin Oncol20052341273610.1200/JCO.2005.07.14415961760Open DOISearch in Google Scholar

Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT. Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 2005; 164: 662-8.BrownWRThoreCRMoodyDMRobbinsMEWheelerKT.Vascular damage after fractionated whole-brain irradiation in ratsRadiat Res2005164662810.1667/RR3453.116238444Search in Google Scholar

Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 2006; 166: 495-503. 10.1667/RR3597.1CoderreJAMorrisGMMiccaPLHopewellJWVerhagenIKleiboerBJLate effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survivalRadiat Res200616649550310.1667/RR3597.116953668Open DOISearch in Google Scholar

Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 2004; 4: 273-84. 10.1124/mi.4.5.7WongCSVan der KogelAJ.Mechanisms of radiation injury to the central nervous system: implications for neuroprotectionMol Interv200442738410.1124/mi.4.5.715471910Open DOISearch in Google Scholar

Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF, Merchant TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 2006; 66: 860-6. 10.1016/j.ijrobp.2006.06.043YuanHGaberMWBoydKWilsonCMKianiMFMerchantTE.Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changesInt J Radiat Oncol Biol Phys200666860610.1016/j.ijrobp.2006.06.04317011458Open DOISearch in Google Scholar

Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J, Polaskova P, Batchelor TT, Gerstner ER, et al. Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 2015; 85: 683-91. 10.1212/WNL.0000000000001861PrustMJJafari-KhouzaniKKalpathy-CramerJPolaskovaPBatchelorTTGerstnerERStandard chemoradiation for glioblastoma results in progressive brain volume lossNeurology2015856839110.1212/WNL.0000000000001861455303526208964Open DOISearch in Google Scholar

Karunamuni RA, Moore KL, Seibert TM, Li N, White NS, Bartsch H, et al. Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol 2016; 118: 29-34. 10.1016/j.radonc.2016.01.003KarunamuniRAMooreKLSeibertTMLiNWhiteNSBartschHRadiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimagingRadiother Oncol2016118293410.1016/j.radonc.2016.01.003476440226806266Open DOISearch in Google Scholar

Petr J, Platzek I, Hofheinz F, Mutsaerts H, Asllani I, van Osch MJP, et al. Photon vs. proton radiochemotherapy: effects on brain tissue volume and perfusion. Radiother Oncol 2018. 10.1016/j.radonc.2017.11.033PetrJPlatzekIHofheinzFMutsaertsHAsllaniIvan OschMJPPhoton vs. proton radiochemotherapy: effects on brain tissue volume and perfusionRadiother Oncol201810.1016/j.radonc.2017.11.03329370984Open DOISearch in Google Scholar

Karunamuni R, Bartsch H, White NS, Moiseenko V, Carmona R, Marshall DC, et al. Dose-dependent cortical thinning after partial brain irradiation in highgrade glioma. Int J Radiat Oncol Biol Phys 2016; 94: 297-304. 10.1016/j.ijrobp.2015.10.026KarunamuniRBartschHWhiteNSMoiseenkoVCarmonaRMarshallDCDose-dependent cortical thinning after partial brain irradiation in highgrade gliomaInt J Radiat Oncol Biol Phys20169429730410.1016/j.ijrobp.2015.10.026474704426853338Open DOISearch in Google Scholar

Andre JB, Nagpal S, Hippe DS, Ravanpay AC, Schmiedeskamp H, Bammer R, et al. Cerebral blood flow changes in glioblastoma patients undergoing bevacizumab treatment are seen in both tumor and normal brain. [Abstract] Neuroradiol J 2015; 28: 112-9. 10.1177/1971400915576641AndreJBNagpalSHippeDSRavanpayACSchmiedeskampHBammerRCerebral blood flow changes in glioblastoma patients undergoing bevacizumab treatment are seen in both tumor and normal brain[Abstract] Neuroradiol J201528112910.1177/1971400915576641475716025923677Open DOISearch in Google Scholar

Mouridsen K, Emblem K, Bjørnerud A, Jennings D, Sorensen AG. Subject-specific AIF optimizes reproducibility of perfusion parameters in longitudinal DSC-MRI. Proc Intl Soc Mag Reson Med 2011; 19: 376.MouridsenKEmblemKBjørnerudAJenningsDSorensenAG.Subject-specific AIF optimizes reproducibility of perfusion parameters in longitudinal DSC-MRIProc Intl Soc Mag Reson Med201119376Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology