Cite

1. Takahashi A, Ota I, Tamamoto T, Asakawa I, Nagata Y, Nakagawa H, et al. p53-dependent hyperthermic enhancement of tumour growth inhibition by X-ray or carbon-ion beam irradiation. Int J Hyperther 2003; 19: 145-53.10.1080/0265673021016613112623637 Search in Google Scholar

2. Yamamoto N, Ikeda C, Yakushiji T, Nomura T, Katakura A, Shibahara T, et al. Genetic effects of X-ray and carbon ion irradiation in head and neck carcinoma cell lines. Bull Tokyo Dent Coll 2007; 48: 177-85.10.2209/tdcpublication.48.17718360104 Search in Google Scholar

3. Cui X, Oonishi K, Tsujii H, Yasuda T, Matsumoto Y, Furusawa Y, et al. Effects of Carbon Ion Beam on Putative Colon Cancer Stem Cells and Its Comparison with X-rays. Cancer Res 2011; 71: 3676-87.10.1158/0008-5472.CAN-10-292621454414 Search in Google Scholar

4. Suit H, Urie M. Proton beams in radiation therapy. J Natl Cancer I 1992; 84: 155-64.10.1093/jnci/84.3.1551311773 Search in Google Scholar

5. Okayasu R, Okada M, Okabe A, Noguchi M, Takakura K, Takahashi S. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and deficient in the non-homologous end-joining pathway. Radiat Res 2006; 165: 59-67.10.1667/RR3489.116392963 Search in Google Scholar

6. Zhao J, Guo Z, Zhang H, Wang Z, Song L, Ma J, et al. The potential value of the neutral comet assay and γH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol 2013; 47: 15-25.10.2478/raon-2013-0045379488124133390 Search in Google Scholar

7. Ghosh S, Narang H, Sarma A, Krishna M. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011; 716: 10-19.10.1016/j.mrfmmm.2011.07.01521839752 Search in Google Scholar

8. Oonishi K, Cui X, Hirakawa H, Fujimori A, Kamijo T, Yamada S, et al. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother Oncol 2012; 105: 258-65.10.1016/j.radonc.2012.08.00923017870 Search in Google Scholar

9. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1: 376-86.10.1074/mcp.M200025-MCP20012118079 Search in Google Scholar

10. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005; 1: 252-62.10.1038/nchembio73616408053 Search in Google Scholar

11. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Bio 2006; 7: 952-58.10.1038/nrm206717139335 Search in Google Scholar

12. Chen EI, Yates JR. Cancer proteomics by quantitative shotgun proteomics. Molecular Oncology 2007; 1: 144-59.10.1016/j.molonc.2007.05.001235216118443658 Search in Google Scholar

13. Lin R-X, Zhao H-B, Li C-R, Sun Y-N, Qian X-H, Wang S-Q. Proteomic Analysis of Ionizing Radiation-Induced Proteins at the Subcellular Level. J Proteome Res 2008; 8: 390-99. Search in Google Scholar

14. Wang F, Bing Z, Zhang Y, Ao B, Zhang S, Ye C, et al. Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line. J Radiat Res 2013; 54: 649-62.10.1093/jrr/rrt010370968023447694 Search in Google Scholar

15. Cui J, Cai J, Gao F, Li B. Proteomic analysis of proteins related to radiationinduced carcinogenesis. Chinese J Cancer 2007; 26: 1157. Search in Google Scholar

16. Berglund SR, Santana AR, Li D, Rice RH, Rocke DM, Goldberg Z. Proteomic analysis of low dose arsenic and ionizing radiation exposure on keratinocytes. Proteomics 2009; 9: 1925-38.10.1002/pmic.200800118266610419294697 Search in Google Scholar

17. Cui ZY, Chen XL, Lu BW, Park SK, Xu T, Xie ZS, et al. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture. Proteomics 2009; 9: 1274-92.10.1002/pmic.200800354294619719253283 Search in Google Scholar

18. Li J, Cai T, Wu P, Cui Z, Chen X, Hou J, et al. Proteomic analysis of mitochondria from Caenorhabditis elegans. Proteomics 2009; 9: 4539-53.10.1002/pmic.20090010119670372 Search in Google Scholar

19. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotech 2008; 26: 1367-72.10.1038/nbt.151119029910 Search in Google Scholar

20. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Meth 2007; 4: 207-14.10.1038/nmeth101917327847 Search in Google Scholar

21. Cox J, Mann M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annu Rev Biochem 2011; 80: 273-99.10.1146/annurev-biochem-061308-09321621548781 Search in Google Scholar

22. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003; 31: 334-41.10.1093/nar/gkg11516556212520017 Search in Google Scholar

23. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 2008; 4: 44-57.10.1038/nprot.2008.211 Search in Google Scholar

24. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1-13.10.1093/nar/gkn923 Search in Google Scholar

25. He JP, Li JH, Ye CY, Zhou LB, Zhu JY, Wang JF, et al. Cell cycle suspension A novel process lurking in G(2) arrest. Cell Cycle 2011; 10: 1468-76.10.4161/cc.10.9.15510 Search in Google Scholar

26. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006; 9: 425-34.10.1016/j.ccr.2006.04.023 Search in Google Scholar

27. Leary SC, Cobine PA, Kaufman BA, Guercin G-H, Mattman A, Palaty J, et al. The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 2007; 5: 9-20.10.1016/j.cmet.2006.12.001 Search in Google Scholar

28. Iwadate Y, Mizoe J-E, Osaka Y, Yamaura A, Tsujii H. High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. Int J Radiat Oncol Biol Phys 2001; 50: 803-08.10.1016/S0360-3016(01)01514-0 Search in Google Scholar

29. Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, et al. Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-κB signalling. J Mol Biol 2010; 396: 178-94.10.1016/j.jmb.2009.11.032 Search in Google Scholar

30. Lee J-H, Kang M-J, Han H-Y, Lee M-G, Jeong S-I, Ryu B-K, et al. Epigenetic alteration of PRKCDBP in colorectal cancers and its implication in tumor cell resistance to TNFα-induced apoptosis. Clin Cancer Res 2011; 17: 7551-62.10.1158/1078-0432.CCR-11-1026 Search in Google Scholar

31. M onticone M, Bisio A, Daga A, Giannoni P, Giaretti W, Maffei M, et al. Demethyl fruticulin A (SCO-1) causes apoptosis by inducing reactive oxygen species in mitochondria. J Cell Biochem 2010; 111: 1149-59.10.1002/jcb.22801 Search in Google Scholar

32. H atanaka T, Huang W, Wang H, Sugawara M, Prasad PD, Leibach FH, et al. Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim Biophys Acta (BBA) - Biomembranes 2000; 1467: 1-6.10.1016/S0005-2736(00)00252-2 Search in Google Scholar

33. Z hang YP, Lambert MA, Cairney AEL, Wills D, Ray PN, Andrulis IL. Molecular structure of the human asparagine synthetase gene. Genomics 1989; 4: 259-65.10.1016/0888-7543(89)90329-7 Search in Google Scholar

34. G oodwin E, Blakely E, Ivery G, Tobias C. Repair and misrepair of heavy-ioninduced chromosomal damage. Adv Space Res 1989; 9: 83-9.10.1016/0273-1177(89)90425-0 Search in Google Scholar

35. O kayasu R, Okada M, Okabe A, Noguchi M, Takakura K, Takahashi S. Repair of DNA Damage Induced by Accelerated Heavy Ions in Mammalian Cells Proficient and Deficient in the Non-homologous End-Joining Pathway. Radiat Res 2006; 165: 59-67.10.1667/RR3489.116392963 Search in Google Scholar

36. J ones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Gene Dev 2009; 23: 537-48.10.1101/gad.1756509276349519270154 Search in Google Scholar

37. R alser M, Wamelink M, Kowald A, Gerisch B, Heeren G, Struys E, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 2007; 6: 10.10.1186/jbiol61237390218154684 Search in Google Scholar

38. G rant C. Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 2008; 7: 1.10.1186/jbiol63224603618226191 Search in Google Scholar

39. S riharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, Hieber L, et al. Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: Four key pathways. J Proteomics 2012; 75: 2319-30.10.1016/j.jprot.2012.02.00922370162 Search in Google Scholar

40. S attler UGA, Mueller-Klieser W. The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 2009; 85: 963-71.10.3109/0955300090325888919895273 Search in Google Scholar

41. Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, et al. STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med 2009; 7:68.10.1186/1741-7015-7-68278045419891767 Search in Google Scholar

42. S attler UGA, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 2010; 94: 102-9.10.1016/j.radonc.2009.11.00720036432 Search in Google Scholar

43. M athupala S, Colen C, Parajuli P, Sloan A. Lactate and malignant tumors: A therapeutic target at the end stage of glycolysis. J Bioenerg Biomembr 2007; 39: 73-7.10.1007/s10863-006-9062-x338585417354062 Search in Google Scholar

44. W ang J, Kirby CE, Herbst R. The Tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J Biol Chem 2002; 277: 46659-68.10.1074/jbc.M20640720012235145 Search in Google Scholar

45. S tawowczyk M, Van Scoy S, Kumar KP, Reich NC. The Interferon Stimulated Gene 54 Promotes Apoptosis. J Biol Chem 2011; 286: 7257-66.10.1074/jbc.M110.207068304498221190939 Search in Google Scholar

46. D eng Z, Sui G, Rosa PM, Zhao W. Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells. PLoS ONE 2012; 7: e36739.10.1371/journal.pone.0036739335146422606284 Search in Google Scholar

47. M agné N, Toillon R-A, Bottero V, Didelot C, Houtte PV, Gérard J-P, et al. NF- κB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231: 158-68.10.1016/j.canlet.2005.01.02216399220 Search in Google Scholar

48. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y. IL-12 Facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol 2007; 35: 203-13.10.1016/j.exphem.2006.10.00217258069 Search in Google Scholar

49. Li H- F, Kim J-S, Waldman T. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol 2009; 4: 43.10.1186/1748-717X-4-43276544719828040 Search in Google Scholar

50. Park JK, Jung H-Y, Park SH, Kang SY, Yi M-R, Um HD, et al. Combination of PTEN and γ-ionizing radiation enhances cell death and G2/M arrest through regulation of AKT activity and p21 induction in non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 2008; 70: 1552-60.10.1016/j.ijrobp.2007.11.06918374229 Search in Google Scholar

51. Toulany M, Baumann M, Rodemann HP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer Res 2007; 5: 863-72.10.1158/1541-7786.MCR-06-029717699110 Search in Google Scholar

52. Li X, M onks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 2007; 447: 1012-6.10.1038/nature0586117554339 Search in Google Scholar

53. Ono H, Ka tagiri H, Funaki M, Anai M, Inukai K, Fukushima Y, et al. Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes. Mol Endocrinol 2001; 15: 1411-22.10.1210/mend.15.8.068411463863 Search in Google Scholar

54. Karu T, P iatibrat L, Kalendo G, Serebriakov N. Changes in the amount of ATP in HeLa cells under the action of He-Ne laser radiation. Biulleten’eksperimental’noi biologii i meditsiny 1993; 115: 617-8. Search in Google Scholar

55. Grande S, Luciani AM, Rosi A, Cherubini R, Conzato M, Guidoni L, et al. Radiation effects on soluble metabolites in cultured HeLa cells examined by 1H MRS: Changes in concentration of glutathione and of lipid catabolites induced by gamma rays and proton beams. Int J Cancer 2001; 96: 27-42.10.1002/ijc.1034511992384 Search in Google Scholar

56. Kostakogl u L, Agress H, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients1. Radiographics 2003; 23: 315-40. 10.1148/rg.23202570512640150 Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology