Open Access

The potential value of the neutral comet assay and γH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines


Cite

1. Nomiya T, Tsuji H, Hirasawa N, Kato H, Kamada T, Mizoe J, et al. Carbon ion radiation therapy for primary renal cell carcinoma: initial clinical experience. Int J Radiat Oncol Biol Phys 2008; 72: 828-33.10.1016/j.ijrobp.2008.01.043Search in Google Scholar

2. Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, et al. Particle irradiation suppresses metastatic potential of cancer cells. CancerRes 2005; 65: 113-20.10.1158/0008-5472.113.65.1Search in Google Scholar

3. Prise KM, Folkard M, Newman HC, Michael BD. Effect of radiation quality on lesion complexity in cellular DNA. Int J Radiat Biol 1994; 66: 537-42.10.1080/09553009414551581Search in Google Scholar

4. El-Awady RA, Dikomey E, Dahm-Daphi J. Radiosensitivity of human tumour cells is correlated with the induction but not with the repair of DNA doublestrand breaks. Br J Cancer 2003; 89: 593-601.10.1038/sj.bjc.6601133Search in Google Scholar

5. Jayakumar S, Bhilwade HN, Pandey BN, Sandur SK, Chaubey RC. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells. MutatRes 2012; 748: 52-9.10.1016/j.mrgentox.2012.06.008Search in Google Scholar

6. Olive PL, Banáth JP, Durand RE. Development of apoptosis and polyploidy in human lymphoblast cells as a function of position in the cell cycle at the time of irradiation. Radiat Res 1996; 146: 595-602.10.2307/3579374Search in Google Scholar

7. Olive PL, Banáth JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat Res 2012; 178: AV35-42.10.1667/RRAV04.1Search in Google Scholar

8. Banuelos CA, Banáth JP, MacPhail SH, Zhao J, Reitsema T, Olive PL. Radiosensitization by the histone deacetylase inhibitor PCI-24781. ClinCancer Res 2007; 13: 6816-26.10.1158/1078-0432.CCR-07-1126Search in Google Scholar

9. Terato H, Tanaka R, Nakaarai Y, Nohara T, Doi Y, Iwai S, et al. Quantitative analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams. J Radiat Res 2008; 49: 133-46.10.1269/jrr.07089Search in Google Scholar

10. Hada M, Georgakilas AG. Formation of clustered DNA damage after high- LET irradiation: a review. J Radiat Res 2008; 49: 203-10.10.1269/jrr.07123Search in Google Scholar

11. Chatterjee A, Holley WR. Biochemical mechanisms and clusters of damage for high-LET radiation. Adv Space Res 1992; 12: 33-43.10.1016/0273-1177(92)90087-ESearch in Google Scholar

12. Ward JF. Biochemistry of DNA lesions. Radiat Res Suppl 1985; 8: S103-11.10.2307/3583517Search in Google Scholar

13. Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 1994; 66: 427-32.10.1080/09553009414551401Search in Google Scholar

14. Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006; 165: 223-30.10.1667/RR3498.1Search in Google Scholar

15. Georgakilas AG, Bennett PV, Sutherland BM. High efficiency detection of bi-stranded abasic clusters in gammairradiated DNA by putrescine. NucleicAcids Res 2002; 30: 2800-8.10.1093/nar/gkf393Search in Google Scholar

16. Rydberg B, Lobrich M and Cooper PK. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method. Radiat Res 1994; 139: 133-41.10.2307/3578657Search in Google Scholar

17. Taucher-Scholz G, Heilmann J, Kraft G. Induction and rejoining of DNA double-strand breaks in CHO cells after heavy ion irradiation. Adv SpaceRes 1996; 18: 83-92.10.1016/0273-1177(95)00794-FSearch in Google Scholar

18. Ostling O, Johanson KJ. Microelectrophoretic study of radiationinduced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 1984; 123: 291-8.10.1016/0006-291X(84)90411-XSearch in Google Scholar

19. Blaisdell JO, Wallace SS. Abortive baseexcision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA 2001; 98: 7426-30.10.1073/pnas.1310777983468511404468Search in Google Scholar

20. Holt SM, Georgakilas AG. Detection of complex DNA damage in gammairradiated acute lymphoblastic leukemia Pre-b NALM-6 cells. Radiat Res 2007; 168: 527-34.10.1667/RR0974.117973547Search in Google Scholar

21. Olive PL. Impact of the comet assay in radiobiology. Mutat Res 2009; 681: 13-23.10.1016/j.mrrev.2007.11.00118083062Search in Google Scholar

22. Nahas SA, Davies R, Fike F, Nakamura K, Du L, Kayali R, et al. Comprehensive profiling of radiosensitive human cell lines with DNA damage response assays identifies the neutral comet assay as a potential surrogate for clonogenic survival. Radiat Res 2012; 177: 176-86.10.1667/RR2580.1431619821962002Search in Google Scholar

23. Iliakis G, Mehta R, Jackson M. Level of DNA double-strand break rejoining in Chinese hamster xrs-5 cells is dose-dependent: implications for the mechanism of radiosensitivity. Int J Radiat Biol 1992; 61: 315-21.10.1080/095530092145509911347063Search in Google Scholar

24. Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N, et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351: 658-63.10.1016/j.bbrc.2006.10.09417083915Search in Google Scholar

25. Stenerlöw B, Höglund E, Carlsson J, Blomquist E. Rejoining of DNA fragments produced by radiations of different linear energy transfer. Int J RadiatBiol 2000; 76: 549-57.10.1080/09553000013856510815636Search in Google Scholar

26. Rydberg B, Cooper B, Cooper PK, Holley WR, Chatterjee A. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: experimental and theoretical study for high- and low-LET radiation. Radiat Res 2005; 163: 526-34.10.1667/RR3346Search in Google Scholar

27. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA doublestranded breaks induce histone H2AX phosphorylation on serine 139. J BiolChem 1998; 273: 5858-68.Search in Google Scholar

28. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad SciUSA 2003; 100: 5057-62.10.1073/pnas.083091810015429712679524Search in Google Scholar

29. Kato TA, Nagasawa H, Weil MM, Genik PC, Little JB, Bedford JS. Gamma- H2AX foci after low-dose-rate irradiation reveal atm haploinsufficiency in mice. Radiat Res 2006; 166: 47-54.10.1667/RR3587.116808619Search in Google Scholar

30. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic AcidsRes 2008; 36: 5678-94.10.1093/nar/gkn550255357218772227Search in Google Scholar

31. Desai N, Davis E, O’Neill P, Durante M, Cucinotta FA, Wu H. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiat Res 2005; 164: 518-22.10.1667/RR3431.1Search in Google Scholar

32. Okayasu R, Okada M, Okabe A, Noguchi M, Takakura K, Takahashi S. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and deficient in the non-homologous endjoining pathway. RadiatRes 2006; 165: 59-67.Search in Google Scholar

33. Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput Biol 2007; 3: e155.10.1371/journal.pcbi.0030155193701717676951Search in Google Scholar

34. Takahashi A, Yamakawa N, Kirita T, Omori K, Ishioka N, Furusawa Y, et al. DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. J Radiat Res 2008; 49: 645-52.10.1269/jrr.0800718987440Search in Google Scholar

35. Jakob B, Splinter J, Durante M, Taucher- Scholz G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc NatlAcad Sci USA 2009; 106: 3172-7.10.1073/pnas.0810987106264247319221031Search in Google Scholar

36. Asaithamby A, Hu B, Chen DJ. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci USA 2011; 108: 8293-8.10.1073/pnas.1016045108310092021527720Search in Google Scholar

37. Yoshikawa T, Kashino G, Ono K, Watanabe M. Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J RadiatRes 2009; 50: 151-60.10.1269/jrr.0810919202324Search in Google Scholar

38. Karlsson KH, Stenerlöw B. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiat Res 2004; 161: 517-27.10.1667/RR3171Search in Google Scholar

39. Takahashi A, Yamakawa N, Kirita T, Omori K, Ishioka N, Furusawa Y, et al. DNA damage recognition proteins localize along heavy ion induced tracks in the cell nucleus. J Radiat Res 2008; 49: 645-52.10.1269/jrr.08007Search in Google Scholar

40. Desai N, Davis E, O’Neill P, Durante M, Cucinotta FA, Wu H. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiat Res 2005; 164: 518-22.10.1667/RR3431.1Search in Google Scholar

41. Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, et al. Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 2010; 86: 682-91.10.3109/0955300100373454320569192Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology