Cite

Benny, P., Badowski, C., Lane, E. B., Raghunath, M. (2016). Improving 2D and 3D skin in vitro models using macromolecular crowding. J. Vis. Exp., doi: 103791/53642.Search in Google Scholar

Bernstam, L. I., Vaughan, F. L., Bernstein, I. A. (1986). Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev. Biol.,22, 695–705.10.1007/BF02621086Search in Google Scholar

Bottcher-Haberzeth, S., Biedermann, T., Reichmann, E. (2010). Tissue engineering of skin. Burns, 36, 450–460.10.1016/j.burns.2009.08.016Search in Google Scholar

Boyce, S. T. (2001). Design principles for composition and performance of cultured skin substitutes. Burns,27, 523–533.10.1016/S0305-4179(01)00019-5Search in Google Scholar

Boyce, S. T. (1996). Cultured skin substitutes: Review. Tissue Eng., 2, 255–266.10.1089/ten.1996.2.25519877957Search in Google Scholar

Chung, E., Rybalko, V. Y., Hsieh, P. L., Leal, S. L., Samano, M. A., Willauer, A. N., Stowers, R. S., Natesan, S., Zamora, D. O., Christy, R. J., Suggs, L. J. (2016). Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen.,24 (5), 810–819.10.1111/wrr.1245927348084Search in Google Scholar

Erdag, G., Morgan J. R. (2004). Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant, 13 (6), 701–712.10.3727/00000000478398359415648740Search in Google Scholar

Harrison, C. A., MacNeil, S. (2008). The mechanism of skin graft contraction: An update on current research and potential future therapies. Burns, 34, 153–163.10.1016/j.burns.2007.08.01118226455Search in Google Scholar

Komi-Kuramochi, A., Kawano, M., Oda, Y., Asada, M., Suzuki, M., Oki, J., Imamura, T. (2005). Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol., 186 (2), 273–89.10.1677/joe.1.0605516079254Search in Google Scholar

Negri, S., Federici, G., Farinato, S.., Fila, C. (2009). Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. J. Clin. Rehab. Tissue Eng. Res., 13 (47), 9211–9216.Search in Google Scholar

Pillet., F., Gibot, L., Madi, M., Rols, M. P., Dague. E. (2017). Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication,9 (2), 025017.10.1088/1758-5090/aa6ed528493850Search in Google Scholar

Yannas, I. V., Burke, J. F. (1980). Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res., 14, 65–81.10.1002/jbm.8201401086987234Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics