Cite

Akahori, H., Tsujino, T., Masuyama, T., Ishihara, M. (2018). Mechanisms of aortic stenosis. J. Cardiol., 71 (3), 215–220.10.1016/j.jjcc.2017.11.00729258711Search in Google Scholar

Ali, O. A., Chapman, M., Nguyen, T. H., Chirkov, Y. Y., Heresztyn, T., Mundisugih, J., Horowitz, J. D. (2014). Interactions between inflammatory activation and endothelial dysfunction selectively modulate valve disease progression in patients with bicuspid aortic valve. Heart, 100 (10), 800–805.10.1136/heartjnl-2014-30550924743038Search in Google Scholar

Chen, B., Meng, L., Shen, T., Gong, H., Qi, R., Zhao, Y., Sun, J., Bao, L., Zhao, G. (2017). Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochem. Biophys. Res. Commun., 490 (4), 1326–1333.10.1016/j.bbrc.2017.07.02328688762Search in Google Scholar

Cheng, P., Zhang, F., Yu, L., Lin, X., He, L., Li, X., Lu, X., Yan, X., Tan, Y., Zhang, C. (2016). Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J. Diabetes Res., 2016, 1540267.10.1155/2016/1540267487623227247947Search in Google Scholar

Couchie, D., Vaisman, B., Abderrazak, A., Mahmood, D. F. D., Hamza, M. M., Canesi, F., Diderot, V., El Hadri, K., Nègre-Salvayre, A., Le Page, A., Fulop, T., Remaley, A. T., Rouis, M. (2017). Human plasma thioredoxin-80 increases with age and in ApoE-/-mice induces inflammation, angiogenesis, and atherosclerosis. Circulation, 136 (5), 464–475.10.1161/CIRCULATIONAHA.117.027612836989328473446Search in Google Scholar

El Hadri, K., Mahmood, D. F., Couchie, D., Jguirim-Souissi, I., Genze, F., Diderot, V., Syrovets, T., Lunov, O., Simmet, T., Rouis, M. (2012). Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 32 (6), 1445–1452.10.1161/ATVBAHA.112.24933422516068Search in Google Scholar

Fondard, O., Detaint, D., Iung, B., Choqueux, C., Adle-Biassette, H., Jarraya, M., Hvass, U., Couetil, J. P., Henin, D., Michel, J. B., Vahanian, A., Jacob, M. P. (2005). Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J., 26 (13), 1333–1341.10.1093/eurheartj/ehi24815827062Search in Google Scholar

Heymans, S., Schroen, B., Vermeersch, P., Milting, H., Gao, F., Kassner, A., Gillijns, H., Herijgers, P., Flameng, W., Carmeliet, P., Van de Werf, F., Pinto, Y. M., Janssens, S. (2005). Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation, 112 (8), 1136–1144.10.1161/CIRCULATIONAHA.104.51696316103240Search in Google Scholar

Ji, Q., Lin, Y., Liang, Z., Yu, K., Liu, Y., Fang, Z., Liu, L., Shi, Y., Zeng, Q., Chang, C., Chai, M., Zhou, Y. (2014). Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris. Cardiovasc. Diabetol., 13, 145.10.1186/s12933-014-0145-4Search in Google Scholar

Kammerer, A., Staab, H., Herberg, M., Kerner, C., Klöting, N., Aust, G. (2018). Increased circulating chemerin in patients with advanced carotid stenosis. BMC Cardiovasc. Disord., 18 (1), 65.10.1186/s12872-018-0803-7589936429653511Search in Google Scholar

Kaur, J. L., Mattu, H. S., Chatha, K., Randeva, H. S. (2018). Chemerin in human cardiovascular disease. Vascul. Pharmacol., 110, 1–6.10.1016/j.vph.2018.06.01830016719Search in Google Scholar

Khan, A. A., Alsahli, M. A., Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. (Basel), 6 (2). pii: E33.10.3390/medsci6020033Search in Google Scholar

Kim, J. B., Kobayashi, Y., Kuznetsova, T., Moneghetti, K. J., Brenner, D. A., O’Malley, R., Dao, C., Wu, J. C., Fischbein, M., Craig Miller, D., Yeung, A. C., Liang, D., Haddad, F., Fearon, W. F. (2018). Int. J. Cardiol., 270, 83–88.10.1016/j.ijcard.2018.05.020Search in Google Scholar

Kunimoto, H., Kazama, K., Takai, M., Oda, M., Okada, M., Yamawaki, H. (2015). Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Amer. J. Physiol. Heart Circ. Physiol., 309 (5), H1017–H1028.10.1152/ajpheart.00820.201426254337Search in Google Scholar

Lenart-Lipińska, M., Duma, D., Hałabiś, M., Dziedzic, M., Solski, J. (2016). Fibroblast growth factor 21 — a key player in cardiovascular disorders? Horm. Mol. Biol. Clin. Investig., 30 (2).10.1515/hmbci-2016-0026Search in Google Scholar

Lurins, J., Lurina, D., Tretjakovs, P., Mackevics,V., Lejnieks, A., Rapisarda, V., Baylon, V. (2018). Increased serum chemerin level to predict early onset of aortic valve stenosis. Biomed. Rep., 8 (1), 31–36.10.3892/br.2017.1010Search in Google Scholar

Münch, J., Avanesov, M., Bannas, P., Säring, D., Krämer, E., Mearini, G., Carrier, L., Suling, A., Lund, G., Patten, M. (2016). Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. J. Card. Fail., 22 (10), 845–850.10.1016/j.cardfail.2016.03.01027018569Search in Google Scholar

Nussbaum, C., Klinke, A., Adam, M., Baldus, S., Sperandio, M. (2013). Myeloperoxidase: A leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal, 18 (6), 692–713.10.1089/ars.2012.478322823200Search in Google Scholar

Perrotta, I., Sciangula, A., Aquila, S., Mazzulla, S. (2016). Matrix metalloproteinase-9 expression in calcified human aortic valves: A histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol., 24 (2), 128–137.10.1097/PAI.000000000000014425390353Search in Google Scholar

Planavila, A., Redondo-Angulo, I., Ribas, F., Garrabou, G., Casademont, J., Giralt, M., Villarroya, F. (2015a). Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res., 106 (1), 19–31.10.1093/cvr/cvu26325538153Search in Google Scholar

Planavila, A., Redondo-Angulo, I., Villarroya, F. (2015b). FGF21 and cardiac physiopathology. Front. Endocrinol. (Lausanne), 6, 133.10.3389/fendo.2015.00133455339726379627Search in Google Scholar

Savic-Radojevic, A., Pljesa-Ercegovac, M., Matic, M., Simic, D., Radovanovic, S., Simic, T. (2017). Novel biomarkers of heart failure. Adv. Clin. Chem., 79, 93–152.10.1016/bs.acc.2016.09.00228212715Search in Google Scholar

Spiroglou, S. G., Kostopoulos, C. G., Varakis, J. N., Papadaki, H. H. (2010). Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J. Atheroscler. Thromb., 17 (2), 115–130.10.5551/jat.173520145358Search in Google Scholar

Stein, J. H, Korcarz, C. E., Hurst, R. T., Lonn, E., Kendall, C. B., Mohler, E. R., Najjar, S. S., Rembold, C. M., Post, W. S.; American Society of Echocardiography Carotid Intima-Media Thickness Task Force (2008). Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J. Amer. Soc. Echocardiogr., 21, 93–111.10.1016/j.echo.2007.11.01118261694Search in Google Scholar

Vahanian, A., Iung, B. (2012). The new ESC/EACTS guidelines on the management of valvular heart disease. Arch. Cardiovasc. Dis., 105, 465–467.10.1016/j.acvd.2012.09.00123062477Search in Google Scholar

van der Veen, B. S., de Winther, M. P., Heeringa, P. (2009). Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal, 11 (11), 2899–2937.10.1089/ars.2009.253819622015Search in Google Scholar

Wada, S., Sugioka, K., Naruko, T., Kato, Y., Shibata, T., Inoue, T., Inaba, M., Ohsawa, M., Yoshiyama, M., Ueda, M. (2013). Myeloperoxidase and progression of aortic valve stenosis in patients undergoing hemodialysis. J. Heart Valve Dis., 22 (5), 640–647.Search in Google Scholar

Yamawaki, H., Kameshima, S., Usui, T., Okada, M., Hara. Y. (2012). A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem. Biophys. Res. Commun., 423 (1), 152–157.10.1016/j.bbrc.2012.05.10322634313Search in Google Scholar

Yao, Q., Song, R., Ao, L., Cleveland, J. C Jr., Fullerton, D. A., Meng, X. (2017). Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Amer. J. Physiol. Cell Physiol., 312 (6), C697–C706.10.1152/ajpcell.00292.2016549458928356268Search in Google Scholar

Zhang, H., Liu, Q., Lin, J. L., Wang, Y., Zhang, R. X., Hou, J. B., Yu, B. (2018). Recombinant human thioredoxin-1 protects macrophages from oxidized low-density lipoprotein-induced foam cell formation and cell apoptosis. Biomol. Ther. (Seoul),26 (2), 121–129.10.4062/biomolther.2016.275583949028554199Search in Google Scholar

eISSN:
1407-009X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics