Cite

1. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006; 113: 2335–6210.1161/CIRCULATIONAHA.104.48257016702488Search in Google Scholar

2. Biomarkers Definitions Working Group. Bio-markers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001; 69: 89–9510.1067/mcp.2001.11398911240971Search in Google Scholar

3. Coresh J, Selvin E, Stevens LA et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298(17): 2038–4710.1001/jama.298.17.203817986697Search in Google Scholar

4. Goodsaid FM, Blank M, Dieterle F et al. Novel biomarkers of acute kidney toxicity. Clin Pharmacol Ther. 2009; 86(5): 490–6.10.1038/clpt.2009.14919710639Search in Google Scholar

5. Goumenos DS, Tsamandas AC, Oldroyd S et al. Transforming growth factor-beta (1) and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease. Nephron. 2001; 87(3): 240–8.10.1159/00004592111287759Search in Google Scholar

6. Goumenos DS, Kalliakmani P, Tsakas S, Papachristou E, Vlachojannis JG. Growth factors and apoptosis-related protein expression in human crescentic nephritis. Med Sci Monit. 2008; 14: 243–48.Search in Google Scholar

7. Papasotiriou M, Kalliakmani P, Huang L et al. Does treatment with corticosteroids and cyclosporine reduce transglutaminase type 2 expression in the renal tissue of patients with membranous nephropathy? Nephron Clin Pract. 2012; 121: 60–7.10.1159/000341116Search in Google Scholar

8. Goumenos DS, Brown CB, Shortland J, el Nahas AM. (1994) Myofibroblasts, predictors of progression of mesangial IgA nephropathy? Nephrol. Dial. Transplant. 1994; 9: 1418–25.Search in Google Scholar

9. Ichimura T, Bonventre JV, Bailly V et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 1998; 273: 4135–42.10.1074/jbc.273.7.4135Search in Google Scholar

10. Ismail O, Zhang X, Bonventre JV, Gunaratnam L. G protein α12 (Gα12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis. Am. J. Phys. Renal Phys. 2016; 310: 607–2010.1152/ajprenal.00169.2015497189326697979Search in Google Scholar

11. Yin C, Wang N. Kidney injury molecule-1 in kidney disease, Ren. Fail. 2016; 38: 1567–73.10.1080/0886022X.2016.119381627758121Search in Google Scholar

12. Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J. Am. Soc. Nephrol. 2007; 18: 2704–14.10.1681/ASN.2007030325Search in Google Scholar

13. Prozialeck WC, Vaidya VS, Liu J et al. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007; 72: 985–93.10.1038/sj.ki.5002467274760517687258Search in Google Scholar

14. Lim AI, Chan LY, Lai KN et al. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int. J. Biochem. Cell Biol. 2012; 44: 1040–50.10.1016/j.biocel.2012.03.015Search in Google Scholar

15. Bailly V, Zhang Z, Meier W et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J. Biol. Chem. 2002; 277: 39739–48.10.1074/jbc.M200562200Search in Google Scholar

16. Lim AI, Tang SC, Lai KN, Leung JC. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J. Cell. Physiol. 2013; 228: 917–24.10.1002/jcp.24267Search in Google Scholar

17. Han WK, Bailly V, Abichandani R et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002; 62: 237–44.10.1046/j.1523-1755.2002.00433.x12081583Search in Google Scholar

18. Ichimura T, Hung CC, Yang SA et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Phys. Renal Phys. 2004; 286: 552–63.10.1152/ajprenal.00285.200214600030Search in Google Scholar

19. Bonventre JV, Yang L. Kidney injury molecule-1. Curr. Opin. Crit. Care. 2010; 16: 556–61.10.1097/MCC.0b013e32834008d3Search in Google Scholar

20. Vaidya VS, Ozer JS, Dieterle F et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 2010; 28: 478–85.10.1038/nbt.1623Search in Google Scholar

21. van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol. 2007; 212: 209–17.10.1002/path.217517471468Search in Google Scholar

22. Schröppel B, Krueger B, Walsh L et al. Tubular expression of KIM-1 does not predict delayed function after transplantation. J. Am. Soc. Nephrol. 2010; 21: 536–42.10.1681/ASN.2009040390Search in Google Scholar

23. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin. Chim. Acta. 2015; 438: 350–57.10.1016/j.cca.2014.08.039Search in Google Scholar

24. De Silva PMCS, Mohammed Abdul KS, Eakanayake EM et al. Urinary biomarkers KIM-1 and NGAL for detection of chronic kidney disease of uncertain etiology (CKDu) among agricultural communities in Sri Lanka. PLoS Negl. Trop. Dis. 2016;10:e000497910.1371/journal.pntd.0004979502805227643785Search in Google Scholar

25. Castillo-Rodriguez E, Fernandez-Prado R, Martin-Cleary C et al. Kidney injury marker 1 and neutrophil gelatinase associated lipocalin in chronic kidney disease. Nephron. 2017; 136: 263–67.10.1159/00044764927771693Search in Google Scholar

26. Nasioudis D, Witkin SS: Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections. Med Microbiol Immunol. 2015; 204: 471–79.10.1007/s00430-015-0394-125716557Search in Google Scholar

27. Kuncio, G.S.; Neilson, E.G.; Haverty, T. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 1991; 39: 550–56.10.1038/ki.1991.632062038Search in Google Scholar

28. Viau A, Karoui KE, Laouari D et al. Lipocalin 2 is essential for chronic kidney disease in mice and human. J. Clin. Investig. 2010; 120: 4065–76.10.1172/JCI42004Search in Google Scholar

29. Dubin RF, Judd S, Scherzer R et al. Urinary Tubular Injury Biomarkers Are Associated With ESRD and Death in the REGARDS Study. Kidney Int Rep. 2018; 3(5): 1183–92.10.1016/j.ekir.2018.05.013612745030197985Search in Google Scholar

30. Seibert FS, Sitz M, Passfall J et al. Prognostic Value of Urinary Calprotectin, NGAL and KIM-1. Chronic Kidney Disease. Kidney Blood Press Res. 2018; 43(4): 1255–62.10.1159/00049240730078006Search in Google Scholar

31. Ding Y, Nie LM, Pang Y et al. Composite urinary biomarkers to predict pathological tubulointerstitial lesions in lupus nephritis. Lupus. 2018; 27(11): 1778–89.10.1177/096120331878816730020021Search in Google Scholar

32. Alderson HV, Ritchie JP, Pagano S et al. The Associations of Blood Kidney Injury Molecule-1 and Neutrophil Gelatinase–Associated Lipocalin with Progression from CKD to ESRD. Clin J Am Soc Nephrol. 2016; 11(12): 2141–49.10.2215/CJN.02670316514206127852662Search in Google Scholar

33. De Carvalho JA, Tatsch E, Hausen BS et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clinical Biochemistry. 2016; 49(3): 232–36.10.1016/j.clinbiochem.2015.10.01626519090Search in Google Scholar

34. Satirapoj B, Aramsaowapak K, Tangwonglert T, Supasyndh O. Novel tubular biomarkers predict renal progression in type 2 diabetes mellitus: a prospective cohort study. J Diabetes Res. 2016; 2016: 3102962.10.1155/2016/3102962Search in Google Scholar

35. Nielsen SE, Reinhard H, Zdunek D et al. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res Clin Pract. 2012; 97(1): 71–6.10.1016/j.diabres.2012.02.007Search in Google Scholar

36. Panduru NM, Sandholm N, Forsblom C et al. Kidney injury molecule-1 and the loss of kidney function in diabetic nephropathy: a likely causal link in patients with type 1 diabetes. Diabetes Care. 2015; 38(6): 1130–37.10.2337/dc14-2330Search in Google Scholar

37. Smith ER, Lee D, Cai M et al. Urinary neutro-phil gelatinase-associated lipocalin may aid prediction of renal decline in patients with non-proteinuric stages 3 and 4 chronic kidney disease. Nephrol Dial Transplant. 2013; 28: 1569–79.10.1093/ndt/gfs586Search in Google Scholar

38. Bolignano D, Lacquaniti A, Coppolino G et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009; 4: 337–44.10.2215/CJN.03530708Search in Google Scholar

39. Mitsnefes MM, Kathman TS, Mishra J et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol. 2007; 22(1): 101–8.10.1007/s00467-006-0244-xSearch in Google Scholar

40. Cochran BH, Reffel AC, Stiles CD. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell. 1983; 33: 939–4710.1016/0092-8674(83)90037-5Search in Google Scholar

41. Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 1999; 10: 61–86.10.1016/S1359-6101(99)00005-2Search in Google Scholar

42. Cushing SD, Berliner JA, Valente AJ et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA. 1990; 87: 5134–38.10.1073/pnas.87.13.5134Search in Google Scholar

43. Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990; 11: 97–101.10.1016/0167-5699(90)90035-8Search in Google Scholar

44. Morii T, Fujita H, Narita T et al. Increased urinary excretion of monocyte chemoattractant protein-1 in proteinuric renal diseases. Ren Fail. 2003; 25(3): 439–44.10.1081/JDI-120021156Search in Google Scholar

45. Segarra-Medrano A, Carnicer-Caceres C, Valtierra-Carmeno N et al. Value of urinary levels of interleukin-6, epidermal growth factor, monocyte chemoattractant protein type1 and transforming growth factor β1 in predicting the extent of fibrosis lesions in kidney biopsies of patients with IgA nephropathy. Nefrologia. 2017; 37(5): 531–38.10.1016/j.nefro.2016.11.01728946966Search in Google Scholar

46. Worawichawong S, Worawichawong S, Radinahamed P et al. Urine Epidermal Growth Factor, Monocyte Chemoattractant Protein-1 or their Ratio as Biomarkers for Interstitial Fibrosis and Tubular Atrophy in Primary Glomerulonephritis. Kidney Blood Press Res. 2016; 41(6): 997–1007.10.1159/00045259527988512Search in Google Scholar

47. Dantas M, Romão EA, Costa RS et al. Urinary excretion of monocyte chemoattractant protein-1: a biomarker of active tubulointerstitial damage in patients with glomerulopathies. Kidney Blood Press Res. 2007; 30(5): 306–13.10.1159/00010780617804911Search in Google Scholar

48. Wang X, Lieske JC, Alexander MP et al. Tubulointerstitial fibrosis of living donor kidneys associates with urinary monocyte chemoattractant protein. Am J Nephrol. 2016; 43(6): 454–59.10.1159/000446851493694027288357Search in Google Scholar

49. Ho J, Rush DN, Gibson IW et al. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation. 2010; 90(4): 394–400.10.1097/TP.0b013e3181e6424d20625355Search in Google Scholar

50. Ho J, Wiebe C, Gibson IW et al. Elevated Urinary CCL2: Cr at 6 months is associated with renal allograft interstitial fibrosis and inflammation at 24 months. Transplantation. 2014; 98(1): 39–4610.1097/01.TP.0000442776.40295.7324646773Search in Google Scholar

51. de Boer IH, Gao X, Bebu I et al. Biomarkers of tubulointerstitial damage and function in type 1 diabetes. BMJ Open Diabetes Res Care. 2017; 5(1):e000461.10.1136/bmjdrc-2017-000461568755329177052Search in Google Scholar

52. Zeng XF, Lu DX, Li JM et al. Performance of urinary neutrophil gelatinase-associated lipocalin, clusterin, and cystatin C in predicting diabetic kidney disease and diabetic microalbuminuria: a consecutive cohort study. BMC Nephrol. 2017; 18(1): 233.10.1186/s12882-017-0620-8550876328701152Search in Google Scholar

53. Hidaka S, Kränzlin B, Gretz N, Witzgall R. Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell and Tissue Research, 2002; 310(3): 289–96.10.1007/s00441-002-0629-512457227Search in Google Scholar

54. Dvergsten J, Manivel JC, Correa-Rotter R, Rosenberg ME. Expression of clusterin in human renal diseases. Kidney Int. 1994; 45(3): 828–35.10.1038/ki.1994.1098196285Search in Google Scholar

55. Mohamed F, Buckley NA, Pickering JW et al. Nephrotoxicity-induced proteinuria increases biomarker diagnostic thresholds in acute kidneyinjury. BMC Nephrol. 2017; 18(1): 122. doi: 10.1186/s12882-017-0532-7.10.1186/s12882-017-0532-7537971128372541Search in Google Scholar

56. Askenazi DJ, Koralkar R, Patil N, Halloran B, Ambalavanan N, Griffin R. Acute Kidney Injury urine biomarkers in very low-birth-weight infants. Clin J Am Soc Nephrol. 2016; 11(9): 1527–35.10.2215/CJN.13381215501249227471253Search in Google Scholar

57. Rouse RL, Zhang J, Stewart SR, Rosenzweig BA, Espandiari P, Sadrieh NK.. Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int. 2011; 79(11): 1186–97.10.1038/ki.2010.46321150870Search in Google Scholar

58. Cho Y, Johnson DW, Vesey DA, Hawley CM, Clarke M, Topley N; balANZ Trial Investigators. Utility of urinary biomarkers in predicting loss of residual renal function: The balANZ Trial. Perit Dial Int. 2015; 35(2): 159–71.10.3747/pdi.2013.00170440631124711637Search in Google Scholar

59. Singhal MK, Bhaskaran S, Vidgen E, Bargman JM, Vas SI, Oreopoulos DG. Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit Dial Int. 2000; 20(4): 429–38.10.1177/089686080002000410Search in Google Scholar

60. Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol 2009; 20(5): 1069–77.10.1681/ASN.2008070730267803319357254Search in Google Scholar

61. Kim SS, Song SH, Kim JH et al. Urine clusterin/apolipoprotein J is linked to tubular damage and renal outcomes in patients with type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2017; 87(2): 156–64.10.1111/cen.13360551106328434209Search in Google Scholar

62. Zeng XF, Lu DX, Li JM et al. Performance of urinary neutrophil gelatinase-associated lipocalin, clusterin, and cystatin C in predicting diabetic kidney disease and diabetic microalbuminuria: a consecutive cohort study. BMC Nephrol. 2017; 18(1): 233.10.1186/s12882-017-0620-8550876328701152Search in Google Scholar

63. Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y. Matrix Metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol. 2016; 91: 134–40.10.1016/j.yjmcc.2015.12.018476443526721597Search in Google Scholar

64. Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol. 2012; 302(11): 1351–61.10.1152/ajprenal.00037.2012377449622492945Search in Google Scholar

65. Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and kidney fibrosis. Front Physiol. 2017; 8: 21.10.3389/fphys.2017.00021530101328239354Search in Google Scholar

66. Urushihara M, Kagami S, Kuhara T, Tamaki T, Kuroda Y. Glomerular distribution and gelatinolytic activity of matrix metalloproteinases in human glomerulonephritis. Nephrol Dial Transplant. 2002; 17(7): 1189–96.10.1093/ndt/17.7.118912105240Search in Google Scholar

67. Erol M, Yigit O, Tasdemir M et al. Potential of serum and urinary Matrix Metalloproteinase-9 levels for the early detection of renal involvement in children with Henoch-Schönlein Purpura. Iran J Pediatr. 2016; 26(4): 6129.10.5812/ijp.6129504684227729963Search in Google Scholar

68. Musiał K, Bargenda A, Zwolińska D. Urine matrix metalloproteinases and their extracellular inducer EMMPRIN in children with chronic kidney disease. Ren Fail. 2015; 37(6): 980–4.10.3109/0886022X.2015.104071525945606Search in Google Scholar

69. van der Zijl NJ, Hanemaaijer R, Tushuizen ME et al. Urinary matrix metalloproteinase-8 and -9 activities in type 2 diabetic subjects: A marker of incipient diabetic nephropathy? Clin Biochem. 2010; 43(7-8): 635–9.10.1016/j.clinbiochem.2010.02.00620184870Search in Google Scholar

70. Sanders JS, Huitema MG, Hanemaaijer R, van Goor H, Kallenberg CG, Stegeman CA. Urinary matrix metalloproteinases reflect renal damage in anti-neutrophil cytoplasm autoantibody-associated vasculitis. Am J Physiol Renal Physiol. 2007; 293(6): 1927–34.10.1152/ajprenal.00310.200717898039Search in Google Scholar

71. Korzeniecka-Kozerska A, Wasilewska A, Tenderenda E, Sulik A, Cybulski K. Urinary MMP-9/NGAL ratio as a potential marker of FSGS in nephrotic children. Dis Markers. 2013; 34(5): 357–62.10.1155/2013/623196Search in Google Scholar

72. Hultström M, Leh S, Skogstrand T, Iversen BM. Upregulation of tissue inhibitor of metallopro-teases-1 (TIMP-1) and procollagen-N-peptidase in hypertension-induced renal damage. Nephrol Dial Transplant. 2008; 23(3): 896–903.10.1093/ndt/gfm71017977875Search in Google Scholar

73. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007; 292(3): 9 05–11.10.1152/ajprenal.00421.200617190907Search in Google Scholar

74. Duymelinck C, Dauwe SE, De Greef KE, Ysebaert DK, Verpooten GA, De Broe ME. TIMP-1 gene expression and PAI-1 antigen after unilateral ureteral obstruction in the adult male rat. Kidney Int. 2000; 58(3): 1186–201.10.1046/j.1523-1755.2000.00274.x10972681Search in Google Scholar

75. Han SY, Jee YH, Han KH et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Nephrol Dial Transplant. 2006; 21(9): 2406–16.10.1093/ndt/gfl23816728425Search in Google Scholar

76. Kwiatkowska E, Domanski L, Bober J et al. Urinary Metalloproteinases-9 and -2 and Their Inhibitors TIMP-1 and TIMP-2 are Markers of Early and Long-Term Graft Function After Renal Transplantation. Kidney Blood Press Res. 2016; 41(3): 288–97.10.1159/00044343127160811Search in Google Scholar

77. Vanden Heuvel GB, Abrahamson DR. Quantitation and localization of laminin A, B1, and B2 chain RNA transcripts in developing kidney. Am J Physiol. 1993; 265(2 Pt 2): 293–9.10.1152/ajprenal.1993.265.2.F2938368338Search in Google Scholar

78. Hörstrup JH, Gehrmann M, Schneider B et al. Elevation of serum and urine levels of TIMP-1 and tenascin in patients with renal disease. Nephrol Dial Transplant. 2002; 17(6): 1005–13.10.1093/ndt/17.6.100512032189Search in Google Scholar

79. Bieniaś B, Sikora P. Urinary metalloproteinases and tissue inhibitors of metalloproteinases as potential early biomarkers for renal fibrosis in children with nephrotic syndrome. Medicine (Baltimore). 2018; 97(8): e9964.10.1097/MD.0000000000009964584196129465592Search in Google Scholar

80. Kanauchi M, Nishioka H, Nakashima Y, Hashimoto T, Dohi K. Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1996; 38(3): 124–8.Search in Google Scholar

81. Li L, Shen Y, Ding Y, Liu Y, Su D, Liang X. Hrd1 participates in the regulation of collagen I synthesis in renal fibrosis. Mol Cell Biochem. 2014; 386(1–2): 35–44.10.1007/s11010-013-1843-z24114659Search in Google Scholar

82. Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004; 20(1): 33–43.10.1016/j.tig.2003.11.00414698617Search in Google Scholar

83. Cheng HF, Wang JL, Zhang MZ, McKanna JA, Harris RC. Nitric oxide regulates renal cortical cyclooxygenase-2 expression. Am J Physiol Renal Physiol. 2000; 279(1): 122–9.10.1152/ajprenal.2000.279.1.F12210894794Search in Google Scholar

84. Tharaux PL, Chatziantoniou C, Casellas D, Fouassier L, Ardaillou R, Dussaule JC. Vascular endothelin-1 gene expression and synthesis and effect on renal type I collagen synthesis and nephroangiosclerosis during nitric oxide synthase inhibition in rats. Circulation. 1999; 99(16): 2185–91.10.1161/01.CIR.99.16.218510217661Search in Google Scholar

85. Nast CC, Adler SG, Artishevsky A, Kresser CT, Ahmed K, Anderson PS. Cyclosporine induces elevated procollagen alpha 1 (I) mRNA levels in the rat renal cortex. Kidney Int. 1991; 39(4): 631–8.10.1038/ki.1991.752051720Search in Google Scholar

86. Wolf G, Killen PD, Neilson EG. Cyclosporin A stimulates transcription and procollagen secretion in tubulointerstitial fibroblasts and proximal tubular cells. J Am Soc Nephrol. 1990; 1(6): 918–22.10.1681/ASN.V169182103851Search in Google Scholar

87. Hultström M, Leh S, Skogstrand T, Iversen BM. Upregulation of tissue inhibitor of metallopro-teases-1 (TIMP-1) and procollagen-N-peptidase in hypertension-induced renal damage. Nephrol Dial Transplant. 2008; 23(3): 896–903.10.1093/ndt/gfm71017977875Search in Google Scholar

88. Park M, Katz R, Shlipak MG et al. Urinary markers of fibrosis and risk of cardiovascular events and death in kidney transplant recipients: The FAVORIT Trial. Am J Transplant. 2017; 17(10): 2640–49.10.1111/ajt.14284562010928371433Search in Google Scholar

89. Wada T, Nangaku M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin Kidney J. 2015; 8(6): 708–15.10.1093/ckj/sfv090465579626613029Search in Google Scholar

90. Wei C, Trachtman H, Li J et al.. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012; 23(12): 2051–9.10.1681/ASN.2012030302350736123138488Search in Google Scholar

91. Hayek SS, Sever S, Ko YA et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015; 373(20): 1916–25.10.1056/NEJMoa1506362470103626539835Search in Google Scholar

92. Hayek SS, Koh KH, Grams ME et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med. 2017; 23(8): 945–53.10.1038/nm.4362601932628650456Search in Google Scholar

93. Hayek SS, Ko YA, Awad M et al. Cardiovascular disease biomarkers and suPAR in predicting decline in renal function: A Prospective Cohort Study. Kidney Int Rep. 2017; 2(3): 425–32.10.1016/j.ekir.2017.02.001567867429142970Search in Google Scholar

94. Zhao Y, Liu L, Huang J et al. Plasma soluble urokinase receptor level is correlated with podocytes damage in patients with IgA nephropathy. PLoS One. 2015; 10(7): e013286910.1371/journal.pone.0132869450056026167688Search in Google Scholar

95. Lv L, Wang F, Wu L et al. Soluble urokinase-type plasminogen activator receptor and incident end-stage renal disease in Chinese patients with chronic kidney disease. Nephrol Dial Transplant. 2018 Aug 13. doi: 10.1093/ndt/gfy265.10.1093/ndt/gfy26530124995Search in Google Scholar

96. Theilade S, Lyngbaek S, Hansen TW et al. Soluble urokinase plasminogen activator receptor levels are elevated and associated with complications in patients with type 1 diabetes. J Intern Med. 2015; 277(3): 362–71.10.1111/joim.1226924830873Search in Google Scholar

97. Good DM, Zürbig P, Argiles A et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010; 9(11): 2424–37.10.1074/mcp.M110.001917298424120616184Search in Google Scholar

98. Pejchinovski M., Mischak H. Clinical proteomics in kidney disease: from discovery to clinical application. Prilozi. 2017; 38(3): 39–54.10.2478/prilozi-2018-000529668468Search in Google Scholar

99. Zürbig P, Jerums G, Hovind P et al. Urinary Proteomics for Early Diagnosis in Diabetic Nephropathy. Diabetes. 2012; 61(12): 3304–13.10.2337/db12-0348350187822872235Search in Google Scholar

100. Roscioni SS, de ZD, Hellemons ME et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012; 56(2): 259–67.10.1007/s00125-012-2755-223086559Search in Google Scholar

101. Argiles A, Siwy J, Duranton F et al. CKD273, a New Proteomics Classifier Assessing CKD and Its Prognosis. PLoS One. 2013; 8(5): e6283710.1371/journal.pone.0062837365390623690958Search in Google Scholar

102. Pontillo C, Jacobs L, Staessen JA et al. A Urinary proteome-based Classifier for the early Detection of Decline in Glomerular Filtration. Nephrol Dial Transplant. 2017; 32(9): 1510–16.Search in Google Scholar

103. Kramer H, Boucher RE, Leehey D et al. Increasing mortality in adults with diabetes and low estimated glomerular filtration rate in the absence of albuminuria. Diabetes Care. 2018; 41(4): 775–81.10.2337/dc17-1954586084629436384Search in Google Scholar

104. Zürbig P, Mischak H, Menne J, Haller H. CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care. 2019; 42(1): e4-e5. doi: 10.2337/dc18-1322.10.2337/dc18-132230455331Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education