Open Access

Influence of Fin’s Material Capabilities on the Propulsion System of Biomimetic Underwater Vehicle


Cite

1. Behbahani S. B., Tan X. (2017). Role of pectoral fin f lexibility in robotic fish performance, Journal of Nonlinear Science, 27, 1155–1181, https://doi.org/10.1007/s00332-017-9373-6.10.1007/s00332-017-9373-6Search in Google Scholar

2. Tytella E. C., Hsu C.-Y., Fauci, L. J. (2014). The role of mechanical resonance in the neural control of swimming in fishes, Zoology, 117(1), 48–56, https://doi.org/10.1016/j.zool.2013.10.011.10.1016/j.zool.2013.10.011452021324433627Search in Google Scholar

3. Jurczyk K., Piskur P., Szymak P. (2020). Parameters identification of the flexible fin kinematics model using vision and genetic algorithms, Polish Maritime Research, 27(2), 39–47, https://doi.org/10.2478/pomr-2020-0025.10.2478/pomr-2020-0025Search in Google Scholar

4. Kancharala A. K. (2015). The role of flexibility on propulsive performance of flapping fins, Doctor of Philosophy in Aerospace Engineering, Virginia Tech, Blacksburg, Virginia, https://doi.org/10919/56563.Search in Google Scholar

5. Lauder G. V., Quinn D. B., Smits A. J. (2014). Scaling the propulsive performance of heaving flexible panels, Journal of Fluid Mechanics, 738, 250–267, https://doi.org/10.1017/jfm.2013.597.10.1017/jfm.2013.597Search in Google Scholar

6. Lighthill M. J. (1960). Note on the swimming of slender fish, Journal of Fluid Mechanics, 9(2), 305–317, https://doi.org/10.1017/S0022112060001110.10.1017/S0022112060001110Search in Google Scholar

7. Morawski M., Malec M., Szymak P., Trzmiel A. (2014). Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle, Solid State Phenomena, 210, 273–279, https://doi.org/10.4028/www.scientific.net/SSP.210.273.10.4028/www.scientific.net/SSP.210.273Search in Google Scholar

8. Morawski M., Malec M., Zając J. (2014). Development of CyberFish – Polish Biomimetic Unmanned Underwater Vehicle BUUV, Applied Mechanics and Materials, 613, 76–82, https://doi.org/10.4028/www.scientific.net/AMM.613.76.10.4028/www.scientific.net/AMM.613.76Search in Google Scholar

9. Morawski M., Słota A., Zając J., Malec M. (2020). Fish-like shaped robot for underwater surveillance and reconnaissance – Hull design and study of drag and noise, Ocean Engineering, 217, 107889, https://doi.org/10.1016/j.oceaneng.2020.107889.10.1016/j.oceaneng.2020.107889Search in Google Scholar

10. Piskur P., Szymak P., Flis L., Jaskólski K., Gasiorowski M. (2020). Hydroacoustic system in a biomimetic underwater vehicle to avoid collision with vessels with low-speed propellers in a controlled environment, Sensors, 20(4), 968, https://doi.org/10.3390/s20040968.10.3390/s20040968707042232054036Search in Google Scholar

11. Piskur P., Szymak P., Flis L., Sznajder J. (2020). Analysis of a fin drag force in a biomimetic underwater vehicle, NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(3), 192–198, https://doi.org/10.17818/NM/2020/3.2.10.17818/NM/2020/3.2Search in Google Scholar

12. Piskur P., Szymak P., Sznajder J. (2020). Identification in a laboratory tunnel to control fluid velocity. In: Bartoszewicz A., Kabziński J., Kacprzyk J. (eds) Advanced, Contemporary Control. Springer, Cham, https://doi.org/10.1007/978-3-030-50936-1_128.10.1007/978-3-030-50936-1_128Search in Google Scholar

13. Przybylski M. (2019). Mathematical model of biomimetic underwater vehicle, Proceedings of the 33rd International ECMS Conference on Modelling and Simulation, Caserta, Italy (pp. 343–347), http://doi.org/10.7148/2019.10.7148/2019Search in Google Scholar

14. Smits A.J., 2019. Undulatory and oscillatory swimming, Journal of Fluid Mechanics, 874, P1, https://doi.org/10.1017/jfm.2019.284.10.1017/jfm.2019.284Search in Google Scholar

15. Szymak P., Morawski M., Malec M. (2012). Conception of research on bionic underwater vehicle with undulating propulsion, Solid State Phenomena, 180, 160–167, https://doi.org/10.4028/www.scientific.net/SSP.180.160.10.4028/www.scientific.net/SSP.180.160Search in Google Scholar

16. Szymak P., Przybylski M., (2018). Thrust measurement of biomimetic underwater vehicle with undulating propulsion, Scientific Journal of Polish Naval Academy, 213(2), 69–82, https://doi.org/10.2478/sjpna-2018-0014.10.2478/sjpna-2018-0014Search in Google Scholar

17. Taylor G. K., Nudds R. L, Thomas A. L. R. (2003). Flying and swimming animals at a Strouhal number tuned for high power efficiency, Nature, 425, 707–710. https://doi.org/10.1038/nature02000.10.1038/nature0200014562101Search in Google Scholar

18. Tytell E. D., Leftwich M. C., Hsu C.-H., Griffith B. E., Cohen A. H., Smits A. J., Hamlet C, Fauci, L. J. (2016). Role of body stiffness in undulatory swimming: Insights from robotic and computational models, Physical Review Fluids, 1, 073202, https://doi.org/10.1103/PhysRevFluids.1.073202.10.1103/PhysRevFluids.1.073202Search in Google Scholar

19. Wu X., Zhang X., Tian X., Li X., Lu W. (2020). A review on fluid dynamics of flapping foils, Ocean Engineering, 195, 106712, https://doi.org/10.1016/j.oceaneng.2019.106712.10.1016/j.oceaneng.2019.106712Search in Google Scholar

20. Yang L., Xiao Q., Shi G., Li Wen, Chen D., Pan G. (2020). A fluid–structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness, Journal of Fluids and Structures, 92, 102778, https://doi.org/10.1016/j.jfluidstructs.2019.102778.10.1016/j.jfluidstructs.2019.102778Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences