Open Access

Experimental Research on Insufficient Water Lubrication of Marine Stern Tube Journal Bearing with Elastic Polymer Bush


Cite

1. Ogle KJ, Carter CD. Converting an icebreaker from an oil lubricated stern tube bearing system to a seawater lubricated stern tube bearing considering environmental and operating costs. Int. Conf. Exhib. Perform. Ships Struct. Ice 2010, ICETECH 2010, 2010, p. 141–5.10.5957/ICETECH-2010-184Search in Google Scholar

2. Richard C, Groves S. An Oil to Water Conversion of a Hydro Turbine Main Guide Bearing – Technical and Environmental Aspects. Thordon Bear Newsworks 20042 2004:1–11. https://thordonbearings.com/docs/default-source/hydro-power/technical-papers/technical-paper---oil-to-water-conversion-of-a-hydro-turbine-main-guide-bearing.pdf?sfvrsn=9f11eb91_8 (accessed April 22, 2020).Search in Google Scholar

3. Auger G, Eng P. Reducing Maintenance with Water Lubricated Turbine Guide Bearings - Design Principles & Case Studies. Tribodays 2017.Search in Google Scholar

4. Roldo L, Komar I, Vulić N. Design and Materials Selection for Environmental Friendly Ship Propulsion System. J Mech Eng 2013;1:25–31.10.5545/sv-jme.2012.601Search in Google Scholar

5. Thordon Bearings Inc. Stern Tube Conversions Reduce Pollution Risk. Thordon Bear INC Mar Issue 2012;1. https://thordonbearings.com/docs/default-source/marine/references/stern-tube-conversions-reduce-pollution-risk.pdf?sfvrsn=bb7e9998_8 (accessed April 22, 2020).Search in Google Scholar

6. Oil to water conversions | Convert your seal to water lubrication. Wartsila 2013. https://www.wartsila.com/docs/default-source/Service-catalogue-files/Seals-Bearings-services/stern-tube-conversions---oil-to-water.pdf?sfvrsn=0 (accessed April 22, 2020).Search in Google Scholar

7. DuraBlue Composite Water-Lubricated Stern Tube Bearings. Duramax Mar 2018. http://www.duramaxmarine.com/pdf/DuraBlue-Bearing_broch2019.pdf (accessed April 22, 2020).Search in Google Scholar

8. Litwin W. Water-lubricated bearings of ship propeller shafts - problems, experimental tests and theoretical investigations. Polish Marit Res 2009;16. https://doi.org/10.2478/v10012-008-0055-z.10.2478/v10012-008-0055-zSearch in Google Scholar

9. L. Shaft line alignment analysis taking ship construction f lexibility and deformations into consideration. Mar Struct 2005;18:62–84. https://doi.org/10.1016/J.MARSTRUC.2005.05.002.10.1016/j.marstruc.2005.05.002Search in Google Scholar

10. Bouyer J, Fillon M. An Experimental Analysis of Misalignment Effects on Hydrodynamic Plain Journal Bearing Performances. J Tribol 2002;124:313. https://doi.org/10.1115/1.1402180.10.1115/1.1402180Search in Google Scholar

11. Litwin W, Olszewski A, Wodtke M. Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng Mater 2011;490:128–34. https://doi.org/10.4028/www.scientific.net/KEM.490.128.10.4028/www.scientific.net/KEM.490.128Search in Google Scholar

12. Sun J, Changlin G. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation. Tribol Int 2004;37:841–8. https://doi.org/10.1016/j.triboint.2004.05.007.10.1016/j.triboint.2004.05.007Search in Google Scholar

13. Litwin W. Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties. Polish Marit Res 2010;17:39–45. https://doi.org/10.2478/v10012-010-0034-z.10.2478/v10012-010-0034-zSearch in Google Scholar

14. Dong CL, Yuan CQ, Bai XQ, Yang Y, Yan XP. Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions. Wear 2015;332–333:1012–20. https://doi.org/10.1016/J.WEAR.2015.01.009.10.1016/j.wear.2015.01.009Search in Google Scholar

15. Ginzburg BM, Tochil’nikov DG, Bakhareva VE, Anisimov A V., Kireenko OF. Polymeric materials for water-lubricated plain bearings. Russ J Appl Chem 2006;79:695–706. https://doi.org/10.1134/S1070427206050016.10.1134/S1070427206050016Search in Google Scholar

16. Akchurin A, Bosman R, Lugt PM, van Drogen M. Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts. Tribol Lett 2016;63:1–14. https://doi.org/10.1007/s11249-016-0701-z.10.1007/s11249-016-0701-zSearch in Google Scholar

17. Młynarczak A. A case of bearings seizing in shaft pipe. Sci J Polish Nav Acad 2014;199:51–63. https://doi.org/10.5604/0860889x.1139633.10.5604/0860889X.1139633Search in Google Scholar

18. Pap B, Fillon M, Guillemont M, Bauduin L, Chocron J, Gédin P, et al. Experimental and Numerical Analysis on the Seizure of a Carbon-Filled PTFE Central Groove Journal Bearing during Start-Up Period. Lubricants 2018;6:14. https://doi.org/10.3390/lubricants6010014.10.3390/lubricants6010014Search in Google Scholar

19. Bishop JL, Ettles CMM. The seizure of journal bearings by thermoelastic mechanisms. Wear 1982;79:37–52. https://doi.org/10.1016/0043-1648(82)90202-2.10.1016/0043-1648(82)90202-2Search in Google Scholar

20. McCarthy, D. M. C.; Glavatskih SB. Assessment of polymer composites for hydrodynamic journal-bearing applications. Lubr Sci 2009:123–34. https://doi.org/10.1002/ls.Search in Google Scholar

21. Del Din M, Kassfeldt E. Wear characteristics with mixed lubrication conditions in a full scale journal bearing. Wear 1999;232:192–8. https://doi.org/10.1016/S0043-1648(99)00145-3.10.1016/S0043-1648(99)00145-3Search in Google Scholar

22. Chen S, Li J, Wei L, Jin Y, Shang H, Hua M, et al. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol Int 2017;115:470–6. https://doi.org/10.1016/J.TRIBOINT.2017.06.011.10.1016/j.triboint.2017.06.011Search in Google Scholar

23. Chen B, Wang J, Yan F. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribol Lett 2011;42:17–25. https://doi.org/10.1007/s11249-010-9743-9.10.1007/s11249-010-9743-9Search in Google Scholar

24. Demirci MT, Düzcükoğlu H. Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings. Mater Des 2014;57:560–7. https://doi.org/10.1016/j.matdes.2014.01.013.10.1016/j.matdes.2014.01.013Search in Google Scholar

25. Wasilczuk M. Polymer lining in the design of hydrodynamic thrust bearings. Tribologia 2007;1:211–23.Search in Google Scholar

26. Litwin W. Water Lubricated Marine Stern Tube Bearings: Attempt at Estimating Hydrodynamic Capacity. ASME/ STLE 2009 Int. Jt. Tribol. Conf., Memphis, Tennessee, USA: ASMEDC; 2009, p. 179–81. https://doi.org/10.1115/IJTC2009-15068.10.1115/IJTC2009-15068Search in Google Scholar

27. Linjamaa A, Lehtovaara A, Larsson R, Kallio M, Söchting S. Modelling and analysis of elastic and thermal deformations of a hybrid journal bearing. Tribol Int 2018;118:451–7. https://doi.org/10.1016/J.TRIBOINT.2017.02.029.10.1016/j.triboint.2017.02.029Search in Google Scholar

28. Kraker A, van Ostayen RAJ, Rixen DJ. Calculation of Stribeck curves for (water) lubricated journal bearings. Tribol Int 2007;40:459–69. https://doi.org/10.1016/j.triboint.2006.04.012.10.1016/j.triboint.2006.04.012Search in Google Scholar

29. Costa L, Fillon M, Miranda AS, Claro JCP. An experimental investigation of the effect of groove location and supply pressure on the THD performance of a steadily loaded journal bearing. J Tribol 2000;122.10.1115/1.555347Search in Google Scholar

30. Majumdar BC, Pai R, Hargreaves DJ. Analysis of water-lubricated journal bearings with multiple axial grooves. Proc Inst Mech Eng Part J J Eng Tribol 2004;218:135–46. https://doi.org/10.1177/135065010421800208.10.1177/135065010421800208Search in Google Scholar

31. Pai RS, Pai R. Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load. Proc Inst Mech Eng Part J J Eng Tribol 2008;222:683–91. https://doi.org/10.1243/13506501JET356.10.1243/13506501JET356Search in Google Scholar

32. Wang N, Meng Q, Wang P, Geng T, Yuan X. Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves. J Fluids Eng n.d.;2013.10.1115/1.4024147Search in Google Scholar

33. Pai R, Hargreaves DJ, Brown R. Modelling of fluid flow in a 3-axial groove water bearing using computational fluid dynamics. 14 th Australas. Fluid Mech. Conf., 2001.Search in Google Scholar

34. Wang Y-Q, Shi X-J, Zhang L-J. Experimental and numerical study on water-lubricated rubber bearings. Ind Lubr Tribol 2014;66:282–8. https://doi.org/10.1108/ILT-11-2011-0098.10.1108/ILT-11-2011-0098Search in Google Scholar

35. Brito FP, Miranda AS, Claro JCP, Fillon M. Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol Int 2012;54:1–8. https://doi.org/10.1016/J.TRIBOINT.2012.04.026.10.1016/j.triboint.2012.04.026Search in Google Scholar

36. Hirani H, Verma M. Tribological study of elastomeric bearings for marine propeller shaft system. Tribol Int 2009;42:378–90. https://doi.org/10.1016/j.triboint.2008.07.014.10.1016/j.triboint.2008.07.014Search in Google Scholar

37. He Y, Zhao Z, Luo T, Lu X, Luo J. Failure analysis of journal bearing used in turboset of a power plant. Mater Des 2013;52:923–31. https://doi.org/10.1016/J.MATDES.2013.06.027.10.1016/j.matdes.2013.06.027Search in Google Scholar

38. Mehdizadeh M, Khodabakhshi F. An investigation into failure analysis of interfering part of a steam turbine journal bearing. Case Stud Eng Fail Anal 2014;2:61–8. https://doi.org/10.1016/J.CSEFA.2014.04.001.10.1016/j.csefa.2014.04.001Search in Google Scholar

39. Branagan L, Branagan, A. L. Survey of Damage Investigation of Babbitted Industrial Bearings. Lubricants 2015;3:91–112. https://doi.org/10.3390/lubricants3020091.10.3390/lubricants3020091Search in Google Scholar

40. Akagaki T, Kato K. Ferrographic analysis of failure process in a full-scale journal bearing. Wear 1992;152:241–52. https://doi.org/10.1016/0043-1648(92)90123-P.10.1016/0043-1648(92)90123-PSearch in Google Scholar

41. Wang Q. Seizure failure of journal-bearing conformal contacts. Wear 1997;210:8–16. https://doi.org/10.1016/S0043-1648(97)00064-1.10.1016/S0043-1648(97)00064-1Search in Google Scholar

42. Litwin W, Olszewski A. Assessment of possible application of water-lubricated sintered brass slide bearing for marine propeller shaft. POLISH Marit Res 2012;19:54–61. https://doi.org/10.2478/v10012-012-0040-4.10.2478/v10012-012-0040-4Search in Google Scholar

43. Takabi J, Khonsari MM. On the thermally-induced seizure in bearings: A review. Tribol Int 2015;91:118–30. https://doi.org/10.1016/J.TRIBOINT.2015.05.030.10.1016/j.triboint.2015.05.030Search in Google Scholar

44. Laukiavich CA, Braun MJ, Chandy AJ. An Investigation into the Thermal Effects on a Hydrodynamic Bearing’s Clearance. Tribol Trans 2015;58:980–1001. https://doi.org/10.1080/10402004.2015.1023408.10.1080/10402004.2015.1023408Search in Google Scholar

45. Litwin W, Dymarski C. Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear. Tribol Int 2016;95:449–55. https://doi.org/10.1016/j.triboint.2015.12.005.10.1016/j.triboint.2015.12.005Search in Google Scholar

46. Barszczewska A, Litwin W. Polymer journal bearings behaviour research under limited lubrication and cooling conditions conducted on high torque test rig. 16th EDFPPrime Work. “Behaviour J. thrust Bear. under transient Mix. Lubr. regime,” Poitiers, France: 2017, p. 24.Search in Google Scholar

47. Zander N. Additive Manufacturing Materials and Technologies. STLE Tribol. Front. Conf., Chicago: 2018.Search in Google Scholar

48. Barszczewska A, Piatkowska E, Litwin W. Selected Problems of Experimental Testing Marine Stern Tube Bearings. Polish Marit Res 2019;26:142–54. https://doi.org/10.2478/pomr-2019-0034.10.2478/pomr-2019-0034Search in Google Scholar

49. Wodtke M, Litwin W. Water-lubricated stern tube bearing - experimental and theoretical investigations of thermal effects. Tribol Int 2021;153:106608. https://doi.org/10.1016/j.triboint.2020.106608.10.1016/j.triboint.2020.106608Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences