Cite

1. Balcombe P., Brierley J., Lewis C., et al. (2019). How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Conversion and Management. 182(2), 72–88.10.1016/j.enconman.2018.12.080Search in Google Scholar

2. Eyring V., Köhler H. W., van Aardenne J., Lauer A. (2005). Emissions from International Shipping: 1. The Last 50 Years. Journal of Geophysical Research Atmospheres.110 (D17), 1–12.Search in Google Scholar

3. Lister J., Poulsen R. T., Ponte S. (2015). Orchestrating Transnational Environmental Governance in Maritime Shipping. Global Environmental Change. 34, 185–95.10.1016/j.gloenvcha.2015.06.011Search in Google Scholar

4. Labeckas G., Slavinskas S., Rudnicki J., et al. (2018). The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Maritime Research. 1(97), 108–120.10.2478/pomr-2018-0013Search in Google Scholar

5. Schinas O., Stefanakos C. N. (2014). Selecting Technologies Towards Compliance with MARPOL Annex VI: The Perspective of Operators. Transportation Research Part D-Transport and Environment. 28(28), 28-40.10.1016/j.trd.2013.12.006Search in Google Scholar

6. Burel F., Taccani R., Zuliani N. (2013). Improving Sustainability of Maritime Transport Through Utilization of Liquefied Natural Gas (LNG) for Propulsion. Energy 57(57), 412–420.10.1016/j.energy.2013.05.002Search in Google Scholar

7. Lu J., Zahedi A., Yang C., et al. (2013). Building the Hydrogen Economy in China: Drivers, Resources and Technologies. Renewable and Sustainable Energy Review. 23, 543–556.Search in Google Scholar

8. Bicer Y., Dincer I. (2018). Clean Fuel Options with Hydrogen for Sea Transportation: A Life Cycle Approach. International Journal of Hydrogen Energy. 43(211), 1179–1193.10.1016/j.ijhydene.2017.10.157Search in Google Scholar

9. Tutak W., Arkadiusz, Grab-Rogaliński K., et al. (2020). Effect of Natural Gas Enrichment with Hydrogen on Combustion Process and Emission Characteristic of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 1(119), 901–910.10.1016/j.ijhydene.2020.01.080Search in Google Scholar

10. Ouchikh S., Lounici M. S., Tarabe, L, et al. (2019). Effect of Natural Gas Enrichment with Hydrogen on Combustion Characteristics of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 44(26), 13974–13987.10.1016/j.ijhydene.2019.03.179Search in Google Scholar

11. Abu-Jrai A. M., Al-Muhtaseb A. H., Hasan A. O., et al. (2017). Combustion, Performance, and Selective Catalytic Reduction of NOx for a Diesel Engine Operated with Combined Tri Fuel (H-2, CH4, and Conventional Diesel). Energy. 1(119), 901–910.10.1016/j.energy.2016.11.050Search in Google Scholar

12. Abu Mansor M. R., Abbood M. M., Mohamad T. I. (2017). The Influence of Varying Hydrogen-Methane-Diesel Mixture Ratio on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine. Fuel. 190(4), 281–291.10.1016/j.fuel.2016.11.010Search in Google Scholar

13. Alrazen H. A., Abu Talib A. (2016). A Two-Component CFD Study of the Effects of H-2, CNG, and Diesel Blend on Combustion. International Journal of Hydrogen Energy 41(24), 10483–10495.10.1016/j.ijhydene.2015.07.097Search in Google Scholar

14. Talibi M., Balachandran R., Ladommatos N. (2017). Influence of Combusting Methane-Hydrogen Mixtures on Compression Ignition Engine Exhaust Emissions snd In-Cylinder Gas Composition. International Journal of Hydrogen Energy. 42(4), 2381–2396.10.1016/j.ijhydene.2016.10.049Search in Google Scholar

15. Tangoz S., Akansu S. O., Kahraman N., et al. (2015). Effects of Compression Ratio on Performance and Emissions of a Modified Diesel Engine Fueled by HCNG. International Journal of Hydrogen Energy. 40(44), 15374–15380.10.1016/j.ijhydene.2015.02.058Search in Google Scholar

16. Mahmood H. A., Adam N. M., Sahari B. B., et al. (2017). New Design of a CNG-H-2-AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study. Energies. 10(9), 1373.10.3390/en10091373Search in Google Scholar

17. Wang H., Yao M., Reitz R. D. (2013). Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy Fuels. 27(12), 7843–7853.10.1021/ef401992eSearch in Google Scholar

18. Maghbouli A., Saray R. K., Shafee S., Ghafouri J. (2013). Numerical Study of Combustion and Emission Characteristics of Dual-Fuel Engines Using 3D-CFD Models Coupled with Chemical Kinetics. Fuel 106, 98–105.10.1016/j.fuel.2012.10.055Search in Google Scholar

19. Han Z. Y., Reitz R. D. (1997). A Temperature Wall Function Formulation for Variable-Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling. International Journal of Heat & Mass Transfer. 40(3), 613–625.10.1016/0017-9310(96)00117-2Search in Google Scholar

20. Han Z., Reitz R. D. (1995). Turbulence Modeling of Internal Combustion Engines Using RNG K-Ε Models. Combustion Science and Technology. 106, 267–95.10.1080/00102209508907782Search in Google Scholar

21. Butler T. D., Cloutman L. D., Dukowicz J. K., Ramshaw D.J. (1981). Multidimensional numerical simulation of reactive flow in internal combustion engines. Progress in Energy & Combustion ence. 7(4), 293–315.10.1016/0360-1285(81)90003-4Search in Google Scholar

22. Beale J. C., Reitz R. D. (1999). Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model. Atomization and Sprays. 9(6), 623–650.10.1615/AtomizSpr.v9.i6.40Search in Google Scholar

23. Feng S. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Mathematical Problems in Engineering.10, 1–12.10.1155/2017/6825079Search in Google Scholar

24. Colket M. B., Spadaccini L. J. (2012). Scramjet Fuels Autoignition Study. Journal of Propulsion and Power. 17(2), 315–323.10.2514/2.5744Search in Google Scholar

25. Verhelst S., Joen C. T., Coillie J. V., et al. (2011). A Correlation for the Laminar Burning Velocity for Use in Hydrogen Spark Ignition Engine Simulation. International Journal of Hydrogen Energy. 36(1), 957–974.10.1016/j.ijhydene.2010.10.020Search in Google Scholar

26. D’Andrea T., Henshaw P. F., Ting S. K. (2004). The Addition of Hydrogen to a Gasoline-Fuelled SI Engine. International Journal of Hydrogen Energy. 29(14), 1541–1552.10.1016/j.ijhydene.2004.02.002Search in Google Scholar

27. Li W., Liu Z., Wang Z. (2016). Experimental and Theoretical Analysis of the Combustion Process at Low Loads of a Diesel Natural Gas Dual-Fuel Engine. Energy. 94, 728–741.10.1016/j.energy.2015.11.052Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences