Open Access

The Influence of Water and Mineral Oil on Mechanical Losses in a Hydraulic Motor for Offshore and Marine Applications


Cite

1. Balawender A. (2005): Physical and mathematical model of losses in hydraulic motors. Developments in mechanical engineering, Gdansk University of Technology Publishers.Search in Google Scholar

2. Bing X., Junhui Z., Huayong Y., Bin Z. (2013): Investigation on the Radial Micro-motion about Piston of Axial Piston Pump. Chinese Journal of Mechanical Engineering, Vol. 26, No. 2. DOI: 10.3901/CJME.2013.02.325.10.3901/CJME.2013.02.325Search in Google Scholar

3. Deptula A., Osinski P., Partyka M. (2017): Identification of influence of part tolerances of 3PWR-SE pump on its total efficiency taking into consideration multi-valued logic trees. Polish Maritime Research, 1(93), Vol. 24. DOI: 10.1515/pomr-2017-000610.1515/pomr-2017-0006Search in Google Scholar

4. Dietrich M. et al (1999): Fundamentals of Machine Design, WNT Warszawa.Search in Google Scholar

5. Gao J., Huang W., Quan L., Huang J. (2017): The distributed parameter model of hydraulic axial piston motor and its application in hydraulic excavator swing systems. Proceedings of the Institution of Mechanical Engineers. Part I. Journal of Systems and Control Engineering. DOI: 10.1177/095965181770409810.1177/0959651817704098Search in Google Scholar

6. Guzowski A., Sobczyk A. (2014): Reconstruction of hydrostatic drive and control system dedicated for small mobile platform. American Society of Mechanical Engineers. DOI: dx.doi.org/10.1115/FPNI2014-7862.10.1115/FPNI2014-7862Search in Google Scholar

7. Jasinski R. (2008): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part I). Polish Maritime Research, No. 4/(58), Vol. 15. DOI: doi.org/10.2478/v10012-007-0095-910.2478/v10012-007-0095-9Search in Google Scholar

8. Jasinski R. (2009): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part II). Polish Maritime Research, No. 1/(59), Vol. 16. DOI: doi.org/10.2478/v10012-008-0012-x10.2478/v10012-008-0052-2Search in Google Scholar

9. Jasinski R. (2009): Problems of the starting and operating of hydraulic components and systems in low ambient temperature (Part III). Polish Maritime Research, No. 4(62), Vol. 16. DOI: 10.2478/v10012-008-0052-210.2478/v10012-008-0052-2Search in Google Scholar

10. Ke M., Ding F., Li B., Chen Z. (2006): Exploration of the influence of backing pressure on the efficiency of hydraulic motor. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery 37(10).Search in Google Scholar

11. Kollek W., Osinski P., Wawrzycka U. (2017): The influence of gear micropump body asymmetry on stress distribution. Polish Maritime Research, 1(93), Vol. 24. DOI: 10.1515/pomr-2017-000710.1515/pomr-2017-0007Search in Google Scholar

12. Landvogt B., Osiecki L., Patrosz P., Zawistowski T., Zylinski B. (2014): Numerical simulation of fluid-structure interaction in the design process for a new axial hydraulic pump. Progress in Computational Fluid Dynamics. Vol. 14, Issue 1. DOI: doi.org/10.1504/PCFD.2014.05919810.1504/PCFD.2014.059198Search in Google Scholar

13. Litwin W., Dymarski C. (2016): Experimental research on water lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear. Tribology International Vol. 95. DOI: 10.1016/j. triboint.2015.12.00510.1016/j.triboint.2015.12.005Search in Google Scholar

14. Litwin W., Olszewski A. (2014): Water-Lubricated Sintered Bronze. Journal Bearings – Theoretical and Experimental Research. Tribology Transactions, No. 1, Vol. 57. DOI: 10.1080/10402004.2013.85698010.1080/10402004.2013.856980Search in Google Scholar

15. Lubinski J., Sliwinski P. (2014): Multi parameter sliding test result evaluation for the selection of material pair for wear resistant components of a hydraulic motor dedicated for use with environmentally friendly working fluids. Solid State Phenomena, Vol. 225. DOI: 10.4028/www.scientific.net/SSP.225.11510.4028/www.scientific.net/SSP.225.115Search in Google Scholar

16. Maczyszyn A. (2014): Energy analysis of rotary positive displacement machines used in hydrostatic transmissions. PhD thesis. Gdansk University of Technology.Search in Google Scholar

17. Niemann G., Winter H. (2003): Maschinenelemente – Band 2. Springer-Verlag. Berlin, Germany.10.1007/978-3-662-11873-3Search in Google Scholar

18. Osiecki L., Patrosz P., Landvogt B., Piechna J., Zawistowski T., Zylinski B. (2013): Simulation of fluid structure interaction in a novel design of high pressure axial piston hydraulic pump. Archive of Mechanical Engineering. The Journal of Committee on Machine Building of Polish Academy of Sciences. Vol. 60, Issue 4. DOI: https://doi.org/10.2478/meceng-2013-003110.2478/meceng-2013-0031Search in Google Scholar

19. Osiecki L., Patrosz P., Zawistowski T., Landvogt B., Piechna J., Zylinski B. (2011): Compensation of pressure peaks in PWK type hydraulic pumps. Key engineering materials. Vol. 490. DOI: 10.4028/www.scientific.net/KEM.490.3310.4028/www.scientific.net/KEM.490.33Search in Google Scholar

20. Osinski P., Deptula A., Partyka M. (2013): Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees. Archives of Civil and Mechanical Engineering, No. 4/2013, DOI: 10.1016/j. acme.2013.05.001.10.1016/j.acme.2013.05.001Search in Google Scholar

21. Paszota Z. (2016): Energy losses in hydrostatic drive. LABERT Academic Publishing.Search in Google Scholar

22. Paszota Z. (2010): Energy losses in the hydraulic rotational motor – definitions and relations for evaluation of the efficiency of motor and hydrostatic drive. Polish Maritime Research, 2(65), Vol 17. DOI: 10.2478/v10012-010-0017-010.2478/v10012-010-0017-0Search in Google Scholar

23. Paszota Z. (2007): Power of energetic losses in hydrostatic drive system elements – definition, relationships, ranges of changes, energetic efficiencies. Part 1 – hydraulic motor. Napędy i Sterowanie, 11/2007, Poland.Search in Google Scholar

24. Paszota Z. (2008): Theoretical and mathematical models of torque of mechanical losses in hydraulic rotary motor used in the hydrostatic drive. International Conference CYLINDER “Research, design, manufacture and operation of hydraulic system”, KOMAG Mining Mechanisation Centre, Gliwice, Poland.Search in Google Scholar

25. Patrosz P. (2014): Deformation in the axial clearance compensation node in the satellite pump unit. Hydraulika i Pneumatyka, 1/2014, Poland.Search in Google Scholar

26. Pobedza J., Sobczyk A. (2014): Properties of high pressure water hydraulic components with modern coatings. Advanced Materials Research. Trans Tech Publications Ltd, 849/2014. DOI: 10.4028/www.scientific.net/AMR.849.100.10.4028/www.scientific.net/AMR.849.100Search in Google Scholar

27. Sliwinski P. (2014): Satellite pump and motor. Machines Technologies Materials, Vol. 8, Issue 9, Bulgaria.Search in Google Scholar

28. Sliwinski P. (2014): High pressure rotational seals for shaft of hydraulic displacement machines. Hydraulika i Pneumatyka, 3/2014, Poland.Search in Google Scholar

29. Sliwinski P. (2013): Pressure losses and power balance in the unloaded satellite pump. Hydraulika a Pneumatika, 1-2/2013, Slovakia.10.1016/S1359-6128(13)70196-4Search in Google Scholar

30. Sliwinski P. (2014): The flow of liquid in flat gaps of satellite motors working mechanism. Polish Maritime Research, No. 2(82), Vol. 21. DOI: 10.2478/pomr-2014-0019.10.2478/pomr-2014-0019Search in Google Scholar

31. Sliwinski P. (2017): The influence of water and mineral oil on volumetric losses in a hydraulic motor. Polish Maritime Research, No. S1 (93), Vol. 24. DOI: 10.1515/pomr-2017-0041.10.1515/pomr-2017-0041Search in Google Scholar

32. Sliwinski P. (2016): Satellite displacement machines. Basic of design and analysis of power loss. Gdansk University of Technology Publishers.Search in Google Scholar

33. Walczak P., Sobczyk A. (2014): Simulation of water hydraulic control system of Francis turbine. American Society of Mechanical Engineers. DOI: dx.doi.org/10.1115/FPNI2014-781410.1115/FPNI2014-7814Search in Google Scholar

34. Xiaogang Z., Long Q, Yang Y., Chengbin W., Liwei Y. (2012): Output characteristics of a series three-port axial piston pump. Chinese Journal of Mechanical Engineering, No. 3, Vol. 25. DOI: 10.3901/CJME.2012.03.49810.3901/CJME.2012.03.498Search in Google Scholar

35. Yu H., Luo C., Wang H. (2012): Performances of a balanced hydraulic motor with planetary gear train. Chinese Journal of Mechanical Engineering, No. 4, Vol. 25. DOI: 10.3901/CJME.2012.04.76010.3901/CJME.2012.04.760Search in Google Scholar

36. Zardin B., Natali E., Borghi M. (2019): Evaluation of the hydro-mechanical efficiency of external gear pumps. Energies, Vol. 12. DOI: 10.3390/en1213246810.3390/en12132468Search in Google Scholar

37. Zardin B., Borghi M., Materi S., Argentino P. (2018): Fluid-dynamic analysis of an in-line water piston pump. 73rd Conference of the Italian-Thermal-Machines-Engineering-Association. Pisa, Italy. Energy Procedia, Vol. 148. DOI: 10.1016/j.egypro.2018.08.04810.1016/j.egypro.2018.08.048Search in Google Scholar

38. Zloto T., Nagorka A. (2009): An efficient FEM for pressure analysis of oil film in a piston pump. Applied Mathematics and Mechanics, No. 1/2009, Vol. 30.10.1007/s10483-009-0106-zSearch in Google Scholar

39. Catalogue of products made by Harken: www.harken.plSearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences