Cite

1. Aguilera R. F., Aguilera R. (2012): World natural gas endowment as a bridge towards zero carbon emissions. Technol. Forecast Soc. Change, 79(3), 579-86.10.1016/j.techfore.2011.09.004Search in Google Scholar

2. Air Liquide, www.airliquide.com [accessed 20.11.16].Search in Google Scholar

3. Arias Fernández I., Romero Gómez M., Baaliña Insua A. (2017): Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395-1411.10.1016/j.rser.2016.09.095Search in Google Scholar

4. Arias Fernández I., Romero Gómez M., Romero Gómez J., López-González L. M. (2017): H2 production by the steam reforming of excess boil off gas on LNG vessels. Energy Conversion and Management, 134(February), 301-313.10.1016/j.enconman.2016.12.047Search in Google Scholar

5. Belz S. (2016): A synergetic use of hydrogen and fuel cells in human spaceflight power systems. Acta Astronautica, 121, 323-331.10.1016/j.actaastro.2015.05.031Search in Google Scholar

6. Burel F., Taccani R., Zuliani N. (2013): Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy, 57, 412-420.10.1016/j.energy.2013.05.002Search in Google Scholar

7. Chang D., Rhee T., Nam K., Chang K., Lee D., Jeong S. (2008): A study on availability and safety of new propulsion systems for LNG carriers. Reliab. Eng. Syst. Saf., 93(12), 1877-85.10.1016/j.ress.2008.03.013Search in Google Scholar

8. Lin C.-Y. (2013): Strategies for promoting biodiesel use in marine vessels. Marine Policy, 40, 84-90.10.1016/j.marpol.2013.01.003Search in Google Scholar

9. Chilev C., Darkrim Lamari F. (2016): Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. International Journal of Hydrogen Energy, 41, 744-175810.1016/j.ijhydene.2015.11.099Search in Google Scholar

10. Rao D., Wang Y., Meng Z., Yao S., Chen X., Shen X., Lu R. (2015): Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 40, 14154-14162.10.1016/j.ijhydene.2015.08.107Search in Google Scholar

11. Dincer I., Canan A. (2015): Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111.10.1016/j.ijhydene.2014.12.035Search in Google Scholar

12. Dincer I. (2012): Green methods for hydrogen production. International Journal of Hydrogen Energy, 37, 1954-1971.10.1016/j.ijhydene.2011.03.173Search in Google Scholar

13. Yeo D., Ahn B., Kim J., Kim I. Propulsion alternatives for modern LNG carriers. Samsung Heavy Industries Co., Ltd., Paper PS6-S.Search in Google Scholar

14. Dobrota D., Lalić B., Komar I. (2013): Problem of Boil-off in LNG Supply Chain. Regular papers, Transactions on Maritime Science, 02, 91-100.10.7225/toms.v02.n02.001Search in Google Scholar

15. Sciberras E. A., Zahawi B., Atkinson D. J. (2015): Electrical characteristics of cold ironing energy supply for berthed ships. Transportation Research Part D, 39, 31-43.10.1016/j.trd.2015.05.007Search in Google Scholar

16. Attah E. E., Bucknall R. (2015): An analysis of the energy efficiency of LNG ships power in options using the EEDI. Ocean Engineering, 110, 62-74.10.1016/j.oceaneng.2015.09.040Search in Google Scholar

17. Exxonmobil, www.corporate.exxonmobil.com [accessed 20.11.16].Search in Google Scholar

18. Omar F., Szpunar J. A., Szpunar B., Beye A. C. (2016): Hydrogen adsorption and storage on palladium – functionalized graphene with NH-dopant: A first principles calculation. Applied Surface Science, Available online September 2016Search in Google Scholar

19. Gas Natural Fenosa. www.gasnaturalfenosa.com [accessed 19.11.16].Search in Google Scholar

20. Gutiérrez J. L. (2005): El hidrógeno, combustible del futuro. Rev. R. Acad. Cienc. Exact. Fís. Nat. (Esp), 99(1), 49-67. V Programa de Promoción de la Cultura Científica y Tecnológica.Search in Google Scholar

21. Lindstad H., Sandaas I., Strømman A. H. (2015): Assessment of cost as a function of abatement options in maritime emission control areas. Transportation Research Part D, 38, 41-48.10.1016/j.trd.2015.04.018Search in Google Scholar

22. Xiao J., Zhou T., Cossement D., Bénard P., Chahine R. (2013): Coupled thermal simulation of hydrogen storage tank-Dewar flask system. International Journal of Hydrogen Energy, 38(25), 10880-88.10.1016/j.ijhydene.2013.03.117Search in Google Scholar

23. Fagerholt K., Gausel N. T., Rakke J. G., Psaraftis H. N. (2015): Maritime routing and speed optimization with emission control areas. Transportation Research Part C, 52, 57-73.10.1016/j.trc.2014.12.010Search in Google Scholar

24. Klein S. A. (2012): Engineering Equation Solver (EES); 2012 Academic Professional V9.172.Search in Google Scholar

25. Kumar S., Kwon H., Choi K., Hyun Cho J., Lim W., Moon I. (2011): Current status and future projections of LNG demand and supplies: A global prospective. Energy Policy, 39(7), 4097-104.10.1016/j.enpol.2011.03.067Search in Google Scholar

26. Linde Group www.linde.com [accessed 02.11.16].Search in Google Scholar

27. Maxwell D., Zhu Z. (2011): Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ., 33(2), 217-26.10.1016/j.eneco.2010.06.012Search in Google Scholar

28. ME-GI Dual Fuel MAN B&W Engines. A Technical, Operational and Cost-effective Solution for Ships Fuelled by Gas. http://goo.gl/caO0k1 [accessed 19.11.16].Search in Google Scholar

29. Mitsubishi Heavy Industries, www.mhi-global.com [accessed 23.11.16].Search in Google Scholar

30. MAN (Marine Engines and Systems), www.marine.man.eu [accessed 23.11.16].Search in Google Scholar

31. Rusman N. A. A., Dahari M. (2016): A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41, 12108-12126.10.1016/j.ijhydene.2016.05.244Search in Google Scholar

32. Reguera E. (2009): Hydrogen Storage Nanocavities. Rev. Cub. Física, 26, 3-14.Search in Google Scholar

33. Repsol. www.repsol.com [accessed 19.11.16].Search in Google Scholar

34. Romero Gómez J., Romero Gómez M., Lopez Bernal J., Baaliña Insua A. (2015): Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers. Energy Convers. Manage., 94,261-74.10.1016/j.enconman.2015.01.074Search in Google Scholar

35. Samsung Techwin, www.samsungtechwin.com [accessed 20.11.16]Search in Google Scholar

36. Sinha R. P., Nik W. M. N. W. (2011): Investigation of propulsion system for large LNG ships. 1st International Conference on Mechanical Engineering Research (ICMER2011)Search in Google Scholar

37. U.S. Energy Information Administration, Annual Energy Outlook 2014.Search in Google Scholar

38. Wartsila.www.wartsila.com [accessed 19.11.16].Search in Google Scholar

39. Yeo D., Ahn B., Kim J., Kim I. (2007): Propulsion alternatives for modern LNG carriers. In: Gas Technology Institute -15th International Conference and Exhibition on Liquefied Natural Gas 2007, LNG 15 GNL 15, 620-35.Search in Google Scholar

40. Yu Y. H., Kim B. G., Lee D. G. (2013): Cryogenic reliability of the sandwich insulation board for LNG ship. Composite Structures, 95, 547-556, ISSN 0263-8223.10.1016/j.compstruct.2012.07.007Search in Google Scholar

41. Shin Y. G., Lee Y. P. (2009): Design of a boil-off natural gas reliquefaction control system for LNG carriers. Applied Energy, 86(1), 37-44, ISSN 0306-2619.10.1016/j.apenergy.2008.03.019Search in Google Scholar

42. Fan Z., Zhao P., Niu M., Maddy J. (2016): The survey of key technologies in hydrogen energy storage. International Journal of Hydrogen Energy, 41, 14535-4552.10.1016/j.ijhydene.2016.05.293Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences