Open Access

Model Predictive Super-Twisting Sliding Mode Control for an Autonomous Surface Vehicle


Cite

1. Esfahani, H. N., Azimirad. V., Eslami. A., Asadi. S.): An optimal sliding mode control based on immune-wavelet algorithm for underwater robotic manipulator. Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 2013.10.1109/IranianCEE.2013.6599587Search in Google Scholar

2. Esfahani, H. N., Azimirad, V., Danesh, M.: A time delay controller included terminal sliding mode and fuzzy gain tuning for underwater vehicle-manipulator systems. Ocean Engineering, Vol. 107, (2015) pp. 97-107.10.1016/j.oceaneng.2015.07.043Search in Google Scholar

3. Esfahani, H. N., Azimirad, V., Zakeri, M.: Sliding Mode-PID Fuzzy controller with a new reaching mode for underwater robotic manipulators. Latin American Applied Research, vol. 44(3), (2014), pp. 253–258.10.52292/j.laar.2014.449Search in Google Scholar

4. Liu C., Zheng H., Negenborn R.R., Chu X., Wang L.: Trajectory tracking control for underactuated surface vessels based on nonlinear Model Predictive Control. In: Corman F., Voß S., Negenborn R. (eds) Computational Logistics. ICCL 2015. Lecture Notes in Computer Science, vol 9335, (2015), pp. 166-180. Springer, Cham. (Proceedings of the 6th International Conference, ICCL 2015, Delft, The Netherlands).10.1007/978-3-319-24264-4_12Search in Google Scholar

5. Liu, J., Luo, J., Cui, J., Peng, Y.: Trajectory Tracking Control of Underactuated USV with Model Perturbation and External Interference. Procedings of the 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016). Chongqing, China, 2016. DOI: 10.1051/matecconf/20167709009.10.1051/matecconf/20167709009Open DOISearch in Google Scholar

6. Wang, W., Mateos, L.A., Park, S., Leoni, P., Gheneti, B., Duarte, F., Ratti, C., Rus, D.: Design, Modeling, and Nonlinear Model Predictive Tracking Control of a Novel Autonomous Surface Vehicle. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 6189–6196. Brisbane, Australia, 2018. DOI: 10.1109/ICRA.2018.8460632.10.1109/ICRA.2018.8460632Open DOISearch in Google Scholar

7. Zheng, H., Negenborn, R.R., Lodewijks, G.: Trajectory tracking of autonomous vessels using model predictive control. IFAC Proceedings Volumes. vol. 19, (2014) no. 3, pp. 8812–8818. (Procedings of the 19th IFAC World Congress, Cape Town, South Africa, August 24-29). DOI: 10.3182/20140824-6-ZA-1003.00767.10.3182/20140824-6-ZA-1003.00767Open DOISearch in Google Scholar

8. Abdelaal, M., Fr, M., Hahn, A.: Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Eng., Vol. 160, (2018), pp. 168–180.10.1016/j.oceaneng.2018.04.026Search in Google Scholar

9. Yi, B., Qiao, L., Zhang, W.: Two-time scale path following of underactuated marine surface vessels : Design and stability analysis using singular perturbation methods. Ocean Eng., Vol. 124, (2016), pp. 287–297.10.1016/j.oceaneng.2016.07.006Search in Google Scholar

10. Valenciaga, F.: A second order sliding mode path following control for autonomous surface vessels. Asian Journal Control, vol. 16(5), (2014), pp. 1515–1521.10.1002/asjc.840Search in Google Scholar

11. Tanakitkorn, K., Phillips, A.B., Wilson, P.A., Turnock, S.R.: Sliding mode heading control of an overactuated hover-capable autonomous underwater vehicle with experimental verification. Journal of Field Robotics, vol. 35(3), (2017), pp. 396–415.10.1002/rob.21766Search in Google Scholar

12. Hung, N.T., Rego, F., Crasta, N., Pascoal, A.M. : Input-Constrained Path Following for Autonomous Marine Vehicles with a Global Region of Attraction. IFAC-PapersOnLine, vol. 51(29), pp. 348–353. (Proceedings of the 11th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles, CAMS-2018. Opatija, Croatia, 2018.10.1016/j.ifacol.2018.09.499Search in Google Scholar

13. Jamalzade, M.S., Koofigar, H.R., Ataei, M.: Adaptive fuzzy control for a class of constrained nonlinear systems with application to a surface vessel. Journal of Theoretical and Applied Mechanics, vol. 54(3), (2016), pp. 987-1000.10.15632/jtam-pl.54.3.987Search in Google Scholar

14. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Ltd., 2011.10.1002/9781119994138Search in Google Scholar

15. Fu, M., Yu, L.: Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances. Ocean Eng., Vol. 159, (2018), pp. 219–227.10.1016/j.oceaneng.2018.04.016Search in Google Scholar

16. Incremona, G. P., Ferrara, A., Magni, L.: Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems. IFAC-PapersOnLine, vol. 48(23), (2015), pp. 102-109. (Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control, NMPC-15. Seville, Spain).10.1016/j.ifacol.2015.11.268Search in Google Scholar

17. Esfahani, H. N: Robust Model Predictive Control for Autonomous Underwater Vehicle–Manipulator System with Fuzzy Compensator. Polish Maritime Research (forthcoming), 2019. 10.2478/pomr-2019-00139.10.2478/pomr-2019-0030Search in Google Scholar

18. Witkowska, A, Smierzchalski, R.: Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Engineering, Vol. 163, (2018), pp. 570-582.10.1016/j.oceaneng.2018.05.061Search in Google Scholar

19. Witkowska, A, Smierzchalski, R.: Adaptive Backstepping Tracking Control for an over–Actuated DP Marine Vessel with Inertia Uncertainties. International Journal of Applied Mathematics and Computer Science, Vol. 28(4), (2018), pp. 679-693.10.2478/amcs-2018-0052Search in Google Scholar

20. Lisowski, J.: Analysis of Methods of Determining the Safe Ship Trajectory. TRANSNAV-International Journal On Marine Navigation And Safety Of Sea Transportation, Vol. 10(2), (2016), pp. 223-228.10.12716/1001.10.02.05Search in Google Scholar

21. Lisowski, J.: Optimization-supported decision-making in the marine mechatronics systems. Solid State Phenomena, vol. 210, (2014), pp. 215-222.10.4028/www.scientific.net/SSP.210.215Search in Google Scholar

22. Tomera, M.: Ant colony optimization algorithm applied to ship steering control. Procedia Computer Science, vol. 35, (2014), pp. 83-92. (Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems, 18th Annual Conference, KES-2014. Gdynia, Poland).10.1016/j.procs.2014.08.087Search in Google Scholar

23. Fang, Y.: Global output feedback control of dynamically positioned surface vessels : an adaptive control approach. Mechatronics, Vol. 14, (2004), pp. 341–356. DOI: 10.1016/S0957-4158(03)00064-3.10.1016/S0957-4158(03)00064-3Open DOISearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences