Open Access

Universal Autonomous Control and Management System for Multipurpose Unmanned Surface Vessel


Cite

1. Barton A., Volna E.: Control of Autonomous Robot using Neural Networks. Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), vol. 1863, Rhodes, Greece 2016.Search in Google Scholar

2. Burdziakowski P., Szulwic J.: A commercial of the shelf components for a unmanned air vehicle photogrammetry, 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena, Bulgaria, 201610.5593/SGEM2016/B22/S10.095Search in Google Scholar

3. Droeschel D., Schwarz M. Behnke S.: Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner, Robotics and Autonomous Systems, vol. 88, pp. 104-115, 2017.10.1016/j.robot.2016.10.017Search in Google Scholar

4. Guan R.P., Ristic B., Wang L.P. et al.: Feature-based robot navigation using a Doppler-azimuth radar, International Journal of Control, vol. 90, issue 4, pp. 888-900, 2017.10.1080/00207179.2016.1244727Search in Google Scholar

5. Guerrero J.A., Jaud M., Lenain R. et al.: Towards LIDARRADAR based Terrain Mapping, 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), Lyon, France, 2015.10.1109/ARSO.2015.7428208Search in Google Scholar

6. Guo W., Wang S., Dun W.: The Design of a Control System for an Unmanned Surface Vehicle, Open Autom. Control Syst. J., vol. 7, pp. 150–156, 2015.10.2174/1874444301507010150Search in Google Scholar

7. Hollinger J., Kutscher B. Close B.: Fusion of Lidar and Radar for detection of partially obscured objects. Unmanned Systems Technology XVII, Baltimore, MD, vol. 9468, 2015.10.1117/12.2177050Search in Google Scholar

8. Huang L., Chen S., Zhang J. et al.: Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor, Sensors, vol. 17, issue 9, 2017.10.3390/s17091932562116428832520Search in Google Scholar

9. Jeon H.C., Park Y.B., Park C.G.: Robust Performance of Terrain Referenced Navigation Using Flash Lidar, Proceedings of the 2016 IEEE/Ion Position, Location and Navigation Symposium (PLANS), pp. 970-975, Savannah, GA, 201610.1109/PLANS.2016.7479796Search in Google Scholar

10. Jiang Z., Wang J., Song Q.et al.: Off-road obstacle sensing using synthetic aperture radar interferometry, Journal of Applied Remote Sensing, vol. 11, 2017.10.1117/1.JRS.11.016010Search in Google Scholar

11. Jo J., Tsunoda Y., Stantic B. et al.: A Likelihood-Based Data Fusion Model for the Integration of Multiple Sensor Data: A Case Study with Vision and Lidar Sensors. Robot Intelligence Technology And Applications 4, vol. 447, pp. 489-500, 2017.10.1007/978-3-319-31293-4_39Search in Google Scholar

12. Jooho L., Joohyun W., Nakwan K.: Obstacle Avoidance and Target Search of an Autonomous Surface Vehicle for 2016 Maritime RobotX Challenge. IEEE OES International Symposium on Underwater Technology (UT), Busan, South Korea, 2017.Search in Google Scholar

13. Kazimierski, W., Stateczny, A.: Fusion of Data from AIS and Tracking Radar for the Needs of ECDIS. Book Group Author(s): IEEE Conference: Signal Processing Symposium (SPS), Jachranka, Poland, 2013.Search in Google Scholar

14. Ko B., Choi H.J., Hong C. et al.: Neural Network-based Autonomous Navigation for a Homecare Mobile Robot. 2017 IEEE International Conference On Big Data And Smart Computing (BIGCOMP), pp. 403-406, Jeju, South Korea, 2017.Search in Google Scholar

15. Lil J., Bao H., Han X. et al.: Real-time self-driving car navigation and obstacle avoidance using mobile 3D laser scanner and GNSS. Multimedia Tools and Applications, vol. 76, pp. 23017-23039, part B, 2016.Search in Google Scholar

16. Lisowski J: Optimization-supported decision-making in the marine game environment. Mechatronic Systems, Mechanics And Materials II, Book Series: Solid State Phenomena, vol. 210, pp. 215-222, 2014.10.4028/www.scientific.net/SSP.210.215Search in Google Scholar

17. Lisowski J: The optimal and safe ship trajectories for different forms of neural state constraints. Mechanics and Materials II, Book Series: Solid State Phenomena, vol.180, pp. 64-69, 2012.10.4028/www.scientific.net/SSP.180.64Search in Google Scholar

18. Mei J.H., Arshad M.R.: COLREGs Based Navigation of Riverine Autonomous Surface Vehicle. IEEE 6TH International Conference on Underwater System Technology, pp.145-149, Malaysia, 2016.10.1109/USYS.2016.7893915Search in Google Scholar

19. Mikhail M., Carmack N.: Navigation Software System Development for a Mobile Robot to Avoid Obstacles in a Dynamic Environment using Laser Sensor, SOUTHEASTCON 2017, Charlotte, NC, 2017.10.1109/SECON.2017.7925336Search in Google Scholar

20. Praczyk T.: Neural anti-collision system for Autonomous Surface Vehicle, Neurocomputing, vol. 149, pp. 559-572, 2015.10.1016/j.neucom.2014.08.018Search in Google Scholar

21. Specht C, Weintrit A., Specht M.: Determination of the territorial sea baseline - Aspect of Using Unmanned Hydrographic Vessels, Transnav-International Journal on Marine Navigation and Safety of Sea Transportation, vol. 10, pp. 649-654, 2016.10.12716/1001.10.04.15Search in Google Scholar

22. Specht C. Switalski E., Specht M.: Application of an Autonomous /Unmanned Survey Vessel (ASV/USV) in bathymetric measurements, Polish Maritime Research, No. 24, pp.36-44, 2017.10.1515/pomr-2017-0088Search in Google Scholar

23. Stateczny A., Gronska D., Motyl W.: Hydrodron - New Step for Professional Hydrography for Restricted Waters, 2018 Baltic Geodetic Congress (BGC Geomatics), pp. 226–230, Olsztyn, Poland, 2018.10.1109/BGC-Geomatics.2018.00049Search in Google Scholar

24. Williams G.M.: Optimization of eye-safe avalanche photodiode lidar for automobile safety and autonomous navigation systems, Optical Engineering, vol. 56, issue 3, 2017.10.1117/1.OE.56.3.031224Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences