Cite

1. Wang, J., Sun, Q., Jiang, Y., Zhang, T., Ma, J., & Feng, J.: Analysis and improvement of underwater wet welding process stability with static mechanical constraint support. Journal of Manufacturing Processes, 34 (2018), pp. 238-250.10.1016/j.jmapro.2018.06.007Search in Google Scholar

2. Hu Y., Shi YH., Shen XQ., Wang ZM.: Microstructure, pitting corrosion resistance and impact toughness of duplex stainless steel underwater dry hyperbaric Flux-Cored Arc. Materials, 10 (12) (2018), pp. 1443.10.3390/ma10121443Search in Google Scholar

3. Fydrych D., Łabanowski J., Tomków J., Rogalski G.: Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materials Science, Vol. 16., iss. 3 (2015), pp. 48-5610.1515/adms-2015-0015Search in Google Scholar

4. Fydrych D., Łabanowski J., Rogalski G.: Weldability of high strength steels in wet welding conditions. Polish Maritime Research, 2 (2013), pp. 67-73.10.2478/pomr-2013-0018Search in Google Scholar

5. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy, 42(38) (2017), pp. 24532-24540.10.1016/j.ijhydene.2017.07.225Search in Google Scholar

6. Li HL., Liu D., Song YY., Yan YT., Guo N., Feng JC.: Microstructure and mechanical properties of underwater wet welded high carbon-equivalent steel Q460 using austenitic consumables. Journal of Materials Processing Technology, 249 (2017), pp. 149-157.10.1016/j.jmatprotec.2017.06.009Search in Google Scholar

7. Santos V. R., Monteiro M. J., Rizzo F.C., Bracarense A. Q., Pessoa E. C. P., Marinho R. R., Vieira L. A.: Development of an oxyrutile electrode for wet welding. Welding Journal, 91(2012), pp. 319-328.Search in Google Scholar

8. Garašić I., Krajl S., Kožuh S.: Investigation into cold cracking in underwater wet welding of API5L X70 steel. Transactions of FAMENA, 3 (2009), pp. 25-34.Search in Google Scholar

9. Maksimov S. Yu.: Underwater arc welding of higher strength low-alloy steels. Welding International Vol. 24, Iss. 6 (2010), pp. 449-454.10.1080/09507110903464820Search in Google Scholar

10. Rogalski G., Łabanowski J., Fydrych D., Tomków J.: Bead-on-plate welding on S235JR steel by underwater local dry chamber process. Polish Maritime Research, 21 (2014), pp. 58-64.10.2478/pomr-2014-0020Search in Google Scholar

11. Kannengiesser T., Boellinghaus T.: Cold cracking tests-an overview of present technologies and applications. Welding in the World, 1 (2013), pp. 3-37.10.1007/s40194-012-0001-7Search in Google Scholar

12. Kurji R., Coniglio N.: Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 77 (2015), pp. 1581-1597.10.1007/s00170-014-6555-3Search in Google Scholar

13. Chen H., Guo N., Shi X., Du Y., Feng J., Wang G.: Effect of hydrostatic pressure on protective bubble characteristic and weld quality in underwater flux-cored wire wet welding. Journal of Materials Processing Technology, 259 (2018), 159-168.10.1016/j.jmatprotec.2018.04.037Search in Google Scholar

14. Guo N., Liu D., Guo W., Li H., Feng J.: Effect of Ni on microstructure and mechanical properties of underwater wet welding joint. Materials & Design, 77 (2015), pp. 25-31.10.1016/j.matdes.2015.04.007Search in Google Scholar

15. Sajek A., Nowacki J.: Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments. Archives of Civil and Mechanical Engineering, 18(2) (2018), pp. 583-591.10.1016/j.acme.2017.10.001Search in Google Scholar

16. Górka J.: Microstructure and properties of high-temperature (HAZ) of thermos-mechanically treated S700MC high-yield-strength steel. Materiali Tehnologije/Materials Technologies, 50 (4) (2016), pp. 617-621.10.17222/mit.2015.123Search in Google Scholar

17. Gao W.B., Wang D.P., Cheng F.J., Deng C.Y., Xu W.: Underwater wet welding for HSLA steels: chemical composition, defects, microstructures, and mechanical properties. Acta Metallurgica Sinica (English Letters), 9 (2015), pp. 1097-1108.10.1007/s40195-015-0300-2Search in Google Scholar

18. Gao W., Wang D., Cheng F., Di X., Xu W.: Micro-structural and mechanical performance of underwater wet welded S355 steel. Journal of Materials Processing Technology, 238 (2016), pp. 333-340.10.1016/j.jmatprotec.2016.07.039Search in Google Scholar

19. Fydrych D., Świerczyńska A., Rogalski G., Łabanowski J.: Temper bead welding of S420G2+M steel in water environment. Advances in Materials Science, Vol. 16, iss. 4 (2016), pp. 5-16.10.1515/adms-2016-0018Search in Google Scholar

20. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal, 1 (2015), pp. 8-15.Search in Google Scholar

21. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W.: Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology, 223 (2015), pp. 305-312.10.1016/j.jmatprotec.2015.04.013Search in Google Scholar

22. Sun Q.J., Cheng W.Q., Liu Y.B., Wang J.F., Cai C.W., Feng J.C.: Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Materials & Design, 103 (2016), pp. 63-70.10.1016/j.matdes.2016.04.019Search in Google Scholar

23. Fydrych D., Świerczyńska A., Rogalski G.: Effect of underwater wet welding conditions on the diffusible hydrogen content in deposited metal. Metallurgia Italiana, 11/12 (2015), pp. 47-52.Search in Google Scholar

24. Tomków J., Rogalski G., Fydrych D., Łabanowski J.: Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. Journal of Materials Processing Technology, 262 (2018), pp. 375-381.10.1016/j.jmatprotec.2018.06.034Search in Google Scholar

25. Tomków J., Fydrych D., Rogalski G., Łabanowski J.: Temper bead welding of S460N steel in wet welding conditions. Advances in materials science, 3 (2018), pp. 5-13.10.1515/adms-2017-0036Search in Google Scholar

26. http://www.lincolnelectric.com/plpl/Consumables/Pages/product.aspx?product=Products_ConsumableEU_StickElectrodes-Omnia-Omnia(LincolnElectric_EU_Base)Search in Google Scholar

27. Xiong J., Yang X., Lin W., Liu K.: Effects of welding parameters on microstructure and mechanical properties of underwater wet friction taper plug welded pipeline steel. Welding in the World, (2018), pp. 1-12.10.1007/s40194-018-0645-zSearch in Google Scholar

28. Xu Y.C., Jing H.Y., Han Y.D., Xu L.D.: Microstructures and mechanical properties od friction tapered stud overlap welding for X65 pipeline steel under wet conditions. Journal of Materials Engineering and Performance, 26(8) (2017), pp. 4092-4103.10.1007/s11665-017-2800-xSearch in Google Scholar

29. Wang F, Yang X., Yin Y., Cui L.: Thermal process influence on microstructure and mechanical behavior for friction taper plug welding in structural steel S355. The International Journal of Advanced Manufacturing Technology, 88(9-12) (2017), pp. 3459-3466.10.1007/s00170-016-9067-5Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences