Open Access

Experimental and Numerical Validation of the Improved Vortex Method Applied to CP745 Marine Propeller Model


Cite

1. D. Durante, G. Dubbioso, C. Testa: Simplified hydrodynamic models for the analysis of marine propellers in a wakefield, Journal of Hydrodynamics, Ser. B, Vol. 25, No. 6, pp. 954–965, 2013.10.1016/S1001-6058(13)60445-XSearch in Google Scholar

2. J. H. Ferziger, M. Perić: Computational methods for fluid dynamics, Springer-Verlag, Berlin, 2002.10.1007/978-3-642-56026-2Search in Google Scholar

3. S. Gaggero, J. Gonzalez-Adalid, M. Perez Sobrino: Design of contracted and tip loaded propellers by using boundary element methods and optimization algorithms, Applied Ocean Research, Vol. 55, pp. 102–129, 2016.10.1016/j.apor.2015.12.004Search in Google Scholar

4. D. S. Greeley, J. E. Kerwin: Numerical methods for propeller design and analysis in steady flow, SNAME Transactions, Vol. 90, pp. 415–453, 1982.Search in Google Scholar

5. ITTC – Recommend procedures and guidelines: model manufacture, propeller models, propeller model accuracy, Propulsion Committee of 24th ITTC 2005.Search in Google Scholar

6. ITTC – Recommend procedures and guidelines: testing and extrapolation methods, propulsion, propulsor open water test, Propulsion Committee of 24th ITTC 2014.Search in Google Scholar

7. H. Jarzyna, T. Koronowicz, J. Szantyr: Design of marine propellers, Selected problems, Ossolineum, Wroclaw 1996.Search in Google Scholar

8. L. Kobyliński: Marine propellers, Wyd. Komunikacyjne, Warszawa 1955 (in Polish).Search in Google Scholar

9. K. Koyama: Comparative calculations of propellers by surface panel method, Workshop organized by 20th ITTC Propulsor Committee, Papers of Ship Research Institute, 1993.Search in Google Scholar

10. P. Król, T. Bugalski, M. Wawrzusiszyn: Development of numerical methods for marine propeller – pre-swirl stator system design and analysis, SMP2017, Espoo, 2017.Search in Google Scholar

11. K.-J. Lee, T. Hoshino, J.-H. Lee: A lifting surface optimization method for the design of marine propeller blades, Ocean Engineering, Vol. 88, pp. 472–470, 2014.10.1016/j.oceaneng.2014.07.010Search in Google Scholar

12. T. Lee, S. O. Park: Improved iteration algorithm for nonlinear vortex lattice method, Journal of Aircraft, Vol. 46, No. 6., 2009.10.2514/1.44829Search in Google Scholar

13. G. Luca, M. Roberto, T. Claudio: Marine propellers performance and flow-field prediction by a free-wake panel method, Journal of Hydrodynamics, Vol. 26, No. 5, pp. 780–795, 2014.10.1016/S1001-6058(14)60087-1Search in Google Scholar

14. F. R. Menter: Two-equations eddy-viscosity turbulence models for engineering applications, AIAA-Journal, Vol. 32, No. 8, 1994.10.2514/3.12149Search in Google Scholar

15. R. Muscari, A. Mascio, R. Verzicco: Modeling of vortex dynamics in the wake of a marine propeller, Computers & Fluids, Vol. 73, pp. 65–79, 2013.10.1016/j.compfluid.2012.12.003Search in Google Scholar

16. J. Noosomton, W. Gunnuang: Case study on CFD simulation and experiment of new developed propeller for training thai boat, SMP2017, Espoo, 2017.Search in Google Scholar

17. OpenFOAM user guide, OpenFOAM Foundation Ltd., 2015.Search in Google Scholar

18. OpenFOAM programmer’s guide, OpenFOAM Foundation Ltd., 2015.Search in Google Scholar

19. Y. Wang, M. Abdel-Maksound, P. Wang, B. Song: Simulate the PPTC propeller with a vortex particle-boundary element hybrid method, SMP2017, Espoo, 2017.Search in Google Scholar

20. D.C. Wilcox: Turbulence modeling for CFD, DCW Industries, 1994.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences