Open Access

Review of Assembly Sequence Planning Methods in Terms of Their Applicability in Shipbuilding Processes

Polish Maritime Research's Cover Image
Polish Maritime Research
Special Issue: Coastal, Offshore and Ocean Engineering

Cite

1. Yun D. H., Choi S. I., Kim S. H., Ko K. H.: Registration of multi-view point clouds for application to ship fabrication, Graphical Models, Vol.90, pp. 1-12, 2017.10.1016/j.gmod.2017.02.001Search in Google Scholar

2. Back M. –G., Lee D. –K., Shin J. –G., Woo J. –H.: A study for production simulation model generation system based on data model at a shipyard, International Journal of Naval Architecture and Ocean Engineering, Vol.8(5), pp. 496-510, 2016.10.1016/j.ijnaoe.2016.05.005Search in Google Scholar

3. Zhao-Hui W., Ji-Wang D., Ming-hua Z., Xiu-min F.: Survey on Flexible Shipbuilding Technologies for Curved Ship-Blocks, Procedia Engineering, Vol. 174, pp. 800-807, 2017.10.1016/j.proeng.2017.01.225Search in Google Scholar

4. Banerjee S. K.: Shipyard production systems design: a statistical approach, International journal of Production Research, Vol. 6, pp. 541-555, 1979.10.1080/00207547908919636Open DOISearch in Google Scholar

5. Cho K.-K., Sun J.-G., Oh J.-S.: An automated welding operation planning system for block assembly in shipbuilding, International Journal of Production Economics, 60-61, pp. 203–209, 1999.10.1016/S0925-5273(98)00151-0Open DOISearch in Google Scholar

6. Chi Z., Jun S.: Intelligentized work-preparation for ship hull construction with Optimized Assembly Planning System, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10-13, pp. 2740–2744, 2010.Search in Google Scholar

7. Ghandi S., Masehian E.: Assembly sequence planning of rigid and flexible parts, Journal of Manufacturing Systems, Vol. 36, pp. 128-146, 2015.10.1016/j.jmsy.2015.05.002Search in Google Scholar

8. Iwańkowicz R.: Methods of sea-going ship hull assembly sequencing and scheduling, Collegiate Publication of the West Pomeranian University of Technology Szczecin, ISBN 978-83-7663-216-2, 2016.Search in Google Scholar

9. Robinson R.W.: Counting labeled acyclic digraphs, in: New directions in the theory of graphs, Ed. F. Harary, [b.m.], Academic Press, 239–273, ISBN-13 978-0123242556, ISBN-10 012324255X, 1973.Search in Google Scholar

10. De Fazio T., Whitney D.: Simplified generation of all mechanical assembly sequences, IEEE Journal of Robotics and Automation, Vol. 3(6), pp. 640–658, 1987.10.1109/JRA.1987.1087132Search in Google Scholar

11. Bourjault A.: Contribution a uneapprochemkthodologique de l’assemblage automatis: Elaboration automatique des sequences operatiores, Thèse de doctorat, Université de Franche-Comte, 1984.Search in Google Scholar

12. Homem de Mello, L. S., and Sanderson, A. C.: AND/OR graph representation of assembly plans, IEEE Transactions on Robotics and Automation, Vol. 6, no. 2, pp. 188-199, 1986.10.1109/70.54734Search in Google Scholar

13. Homem de Mello, L. S., and Sanderson, A. C.: Planning repair sequences using the And/Or graph representation of assembly plans, Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, USA, pp. 1861-1862, 1988.Search in Google Scholar

14. Eng T.-H., Ling Z.-K., Olson W., McLean C.: Feature-based assembly modeling and sequence generation, Comput. Ind. Eng., Vol. 36, pp. 17-33, 1999.10.1016/S0360-8352(98)00106-5Search in Google Scholar

15. Voutchkov I., Keane A., Bhaskar A., Olsen T.M.: Weld sequence optimization: the use of surrogate models for solving sequential combinatorial problems, Computer Methods in Applied Mechanics and Engineering, vol. 194, pp. 3535–3551, 2005.10.1016/j.cma.2005.02.003Search in Google Scholar

16. Sasaki Y., Sonda M., Ito K.: Development of a computer-aided process planning system based on a knowledge base, Journal of Marine Science and Technology, Vol. 7, pp. 175-179, 2010.10.1007/s007730300008Search in Google Scholar

17. Bonneville F., Perrard C., Henrioud J.M.: A genetic algorithm to generate and evaluate assembly plans, IEEE Symposium on Emerging Technology and Factory Automation, Vol. 2, pp. 231–239, 1995.Search in Google Scholar

18. Chen & Liu Chen S.F., Liu Y.J.: An adaptive genetic assembly-sequence planner, Int J Comput Integr Manuf, Vol. 14(5), pp. 489–500, 2001.10.1080/09511920110034987Open DOISearch in Google Scholar

19. Seo Y., Sheen D., Kim T.: Block assembly planning in shipbuilding using case-based reasoning. Expert Systems with Applications, Vol. 32, pp. 245–253, 2007.10.1016/j.eswa.2005.11.013Open DOISearch in Google Scholar

20. Qu S., Jiang Z., Tao N.: An integrated method for block assembly sequence planning in shipbuilding, The International Journal of Advanced Manufacturing Technology, Vol. 69 (5-8), pp. 1123–1135, 2013.10.1007/s00170-013-5087-6Search in Google Scholar

21. Zhong Y., Xue K., Shi D.: Assembly unit partitioning for hull structure in shipbuilding, Computer-Aided Design, Vol. 45(12), pp. 1630–1638, 2013.10.1016/j.cad.2013.08.004Search in Google Scholar

22. Iwańkowicz R.: An efficient evolutionary method of assembly sequence planning for shipbuilding industry, Assembly Automation, Vol. 36(1), pp. 60-71, 2016.10.1108/AA-02-2015-013Open DOISearch in Google Scholar

23. Iwańkowicz R.: Optimization of assembly plan for large offshore structures, Advances in Science and Technology – Research Journal, Vol. 6(16), pp. 31-36, 2012.10.5604/20804075.1025126Search in Google Scholar

24. Iwańkowicz R., Taraska M.: Self-classification of assembly database using evolutionary method, Assembly Automation, Vol. 38(1), 2017.10.1108/AA-06-2017-071Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences