Open Access

An Analysis of the Tvergaard Parameters at Low Initial Stress Triaxiality for S235JR Steel


Cite

1. Abaqus 6.10. Analysis User's Manual, 2010, Dassault Systèmes Simulia Corporation, Providence.Search in Google Scholar

2. Corigliano, A., Mariani, S. and Orsatti, B., 2000, “Identifcation of Gurson-Tvergaard material model parameters via Kalman fltering technique. I. Theory”, International Journal of Fracture, Vol. 104, No. 4, pp. 349-373.10.1023/A:1007602106711Search in Google Scholar

3. Faleskog, J., Gao, X. and Shih, C.F., 1998, “Cell model for nonlinear fracture analysis – I. Micromechanics calibration”, International Journal of Fracture, Vol. 89, No. 4, pp. 355-373.10.1023/A:1007421420901Search in Google Scholar

4. Gurson, A. L., 1977, “Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and fow rules for porous ductile media”, Journal of Engineering Materials and Technology, Transactions of the ASME Vol. 99, No. 1, pp. 2-15.10.1115/1.3443401Search in Google Scholar

5. Hancock, J.W. and Mackenzie, A. C., 1976, “On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states”, Journal of Mechanics and Physics of Solids, Vol. 24, No. 2-3, pp. 147-160.10.1016/0022-5096(76)90024-7Search in Google Scholar

6. Kossakowski, P.G., 2010, “A n analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure”, Archives of Civil and Mechanical Engineering, Vol. 10, No. 2, pp. 15-39.10.1016/S1644-9665(12)60048-XSearch in Google Scholar

7. Kossakowski, P.G., 2012a, “Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales”, Journal of Theoretical and Applied Mechanics, Vol. 50, No. 2, pp. 589-607.Search in Google Scholar

8. Kossakowski, P.G., 2012b, “Prediction of ductile fracture for S235JR steel using the Stress Modifed Critical Strain and Gurson-Tvergaard-Needleman models”, Journal of Materials in Civil Engineering, Vol. 24, No. 12, pp. 1492-1500.10.1061/(ASCE)MT.1943-5533.0000546Search in Google Scholar

9. Kossakowski, P.G., Trąmpczyński, W., 2012, “Microvoids evolution in S235JR steel subjected to multi-axial stress state”, Engineering Transactions, Vol. 60, No. 4, pp. 287– 314.Search in Google Scholar

10. Kossakowski, P.G., 2012c, “Infuence of initial porosity on strength properties of S235JR steel at low stress triaxiality”, Archives of Civil Engineering, Vol. 58, No. 3, pp. 293-308.10.2478/v.10169-012-0017-9Search in Google Scholar

11. Kossakowski, P.G., 2012d, “Efect of initial porosity on material response under multi-axial stress states for S235JR steel”, Archives of Civil Engineering, Vol. 58, No. 4, pp. 445-462.10.2478/v.10169-012-0024-xSearch in Google Scholar

12. Kossakowski, P.G., 2012e, “The analysis of Tvergaard's parameters of S235JR steel in high triaxiality”, Advances in Material Science, Vol. 12, No. 1, pp. 27-35.10.2478/v10077-012-0003-6Search in Google Scholar

13. Nahshon, K. and Hutchinson, J.W., 2008, “Modifcation of the Gurson Model for shear failure”, European Journal of Mechanics - A/Solids, Vol. 27, No.1, pp. 1-17.10.1016/j.euromechsol.2007.08.002Search in Google Scholar

14. Needleman, A. and Tvergaard, V., 1984, “A n analysis of the ductile rupture in notched bars”, Journal of the Mechanics and Physics of Solids, Vol. 32, No. 6, pp. 461-490.10.1016/0022-5096(84)90031-0Search in Google Scholar

15. PN-EN 10002-1, 2004, Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature, Polish Committee for Standardization, Warsaw.Search in Google Scholar

16. PN-EN 1993-1-10, 2005, Eurocode 3 – Design of steel structures – Part 1: Material toughness and through-thickness properties, Polish Committee for Standardization, Wa rs a w.Search in Google Scholar

17. Richelsen, A. B. and Tvergaard V., 1994, “Dilatant plasticity or upper bound estimates for porous ductile solids”, Acta Metallurgica et Materialia, Vol. 42, No. 8, pp. 2561-2577.10.1016/0956-7151(94)90198-8Search in Google Scholar

18. Ruggieri, C., 2004, “Numerical investigation of constraint efects on ductile fracture in tensile specimens”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 26, No. 2, pp. 190-199.10.1590/S1678-58782004000200011Search in Google Scholar

19. Sedlacek, G., Feldmann, M., Kühn, B., Tschickardt, D., Höhler, S., Müller, C., Hensen, W., Stranghöner, N. Dahl, W., Langenberg, P., Münstermann, S., Brozetti, J., Raoul, J., Pope, R. and Bijlaard, F., 2008, “Commentary and worked examples to EN 1993-1-10 “Material toughness and through thickness properties“ and other toughness oriented rules in EN 1993”, JRC Scientifc and Technical Reports, European Commission Joint Research Centre, Ofce for Ofcial Publications of the European Communities, Luxembourg.Search in Google Scholar

20. Tvergaard, V., 1981, “Infuence of voids on shear band instabilities under plane strain conditions”, International Journal of Fracture, Vol. 17, No. 4, pp. 389-407.10.1007/BF00036191Search in Google Scholar

21. Tvergaard, V., 1989, “Material failure by void growth to coalescence”, Advanced in Applied Mechanics, Vol. 27, pp. 83-151.10.1016/S0065-2156(08)70195-9Search in Google Scholar

22. Tvergaard, V. and Needleman, A., 1984, “Analysis of the cup-cone fracture in a round tensile bar”, Acta Metallurgica, Vol. 32, No. 1, pp. 157-169.10.1016/0001-6160(84)90213-XSearch in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences