Open Access

Diagnosis of amyotrophic lateral sclerosis (ALS) disorders based on electromyogram (EMG) signal analysis and feature selection


Cite

1. Rissanen SM, Kankaanpaa M, Tarvainen MP, et al. Extraction of Typical Features from Surface EMG Signals in Paarkinson’s Disease. 11th International Congress of Parkinsons’s Disease and Movement Disorders, Istanbul, Turkey, 2007.Search in Google Scholar

2. Rowland LP. Amyotrophic Lateral Sclerosis: Theories and Therapies. Ann. Neurol. 1994;35(2):129-130. doi: 1O.1002/ana.410350202.10.1002/ana.4103502028109893Search in Google Scholar

3. Kaplanis PA, Pattichis CS, Hadjileontiadis LJ, Panas SM. Bispectral analysis ofsurface EMG. In: Proceedings of the 10th Mediterranean Electrotechnical Conference, vol. II. p. 770-773, 2000.Search in Google Scholar

4. Nazarpour K, Sharafat AR, Firoozabadi SMP. Application of higher order statisticsto surface electromyogram signal classification. IEEE Trans Biomed Eng. 2007;54(10):1762-1769.10.1109/TBME.2007.89482917926674Search in Google Scholar

5. Meziani F, Rerbal S, Debbal SM. Spectro-temporal analysis of electromyogram signals (EMGs). Int J Med Eng Inf. 2019;22(2).10.1504/IJMEI.2019.098754Search in Google Scholar

6. Raez MB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online. 2006;8:11-35.10.1251/bpo115145547916799694Search in Google Scholar

7. Phinyomark A, Phukpattaranont P, Limsakul C. Feature Reduction and Selection for EMG Signal Classification. Expert Systems with Applications. 2012;39(8):7420-7431.10.1016/j.eswa.2012.01.102Search in Google Scholar

8. Strazza A, Verdini F, Burattini L, et al. Time-frequency Analysis of Surface EMG signals for Maximum Energy Localization during Walking. In: Eskola H., Väisänen O., Viik J., Hyttinen J. (eds) EMBEC & NBC 2017. IFMBE Proceedings. 2018;65.10.1007/978-981-10-5122-7_124Search in Google Scholar

9. Farge M. Wavelet Transforms and their Applications to Turbulence. Ann Rev Fluid Mech. 1992;24:395-457.10.1146/annurev.fl.24.010192.002143Search in Google Scholar

10. Strazza A, Verdini F, Burattini L, et al. A Time-Frequency Approach for the Assessment of Dynamic Muscle Co-contractions. IFMBE Proceedings. 2019;68/2:223-22610.1007/978-981-10-9038-7_41Search in Google Scholar

11. Ismail AR, Asfour SS. Continuous Wavelet Transform Application to EMG Signals During Human Gait. Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284), Pacific Grove, CA, 1998, pp. 325-329.Search in Google Scholar

12. Mishra B, Wadhwani AK, Singh S. EMG Signal Classification for Neuromuscular Disorder using Soft-Computing Techniques. IJIRMPS. 2019;7(1):24-27.Search in Google Scholar

13. J Too, Abdullah AR, Tengku Zawawi TNS, et al. Classification of EMG Signal Based on Time Domain and Frequency Domain Features International Journal of Human and Technology Interaction. 2017;1(1):25-29.Search in Google Scholar

14. Nikolic M. Detailed analysis of clinical electromyography signals: Emg decomposition, findings and firing pattern analysis in controls and patients with myopathy and amytrophic lateral sclerosis. Ph.D. dissertation, 2001. Online. Available: http://www.emglab.netSearch in Google Scholar

15. Chua KC, Chandran V, Acharyaa UR, Lima CM. Application of higher order statistics/spectra in biomedical signals. Med Eng Phys. 2010;32(7):679-689.10.1016/j.medengphy.2010.04.00920466580Search in Google Scholar

16. Nikias CL, Raghuveer MR. Bispectrum estimation a digital signal processing framework. Proceedings of the IEEE. 1987;75(7):869-891.10.1109/PROC.1987.13824Search in Google Scholar

17. Nikias CL, Petropulu AP. Higher-order spectra analysis: a nonlinear Signal Processing Framework. Prentice-Hall, Englewood Cliffs, NJ; 1993.Search in Google Scholar

18. Mishra A, Mishra V, Yadav VK. Comparison of normal and pathological gait using EMG signal. Int J Adv Res Sci Eng. 2017;6(2):442-451.Search in Google Scholar

19. Cabrera C. Analyse du signal myoélectrique pour l’évaluation de la fatigue périphérique chez des nageurs de haut niveau en demi-fond. 2014.Search in Google Scholar

20. Karthick PA, Ghosh DM, Ramakrishnan S. Surface electromyography-based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput Methods Programs Biomed. 2018;154:45-56.10.1016/j.cmpb.2017.10.02429249346Search in Google Scholar

21. Khan S, Hussain M, Aboalsamh H, Bebis G. A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimedia Tools and Applications. 2017;76(1):33-57.10.1007/s11042-015-3017-3Search in Google Scholar

22. Benazzouz A, Guilal R, Amirouche F, et al. EMG Feature Selection for Diagnosis of Neuromuscular Disorders. 2019 International Conference on Networking and Advanced Systems (ICNAS). 2019.10.1109/ICNAS.2019.8807862Search in Google Scholar

23. Xing K., Yang P, Huang J, et al. A real-time EMG pattern recognition method for virtual myoelectric hand control. Neurocomputing. 2014;136:345-355.10.1016/j.neucom.2013.12.010Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics