Open Access

Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation


Cite

[1] kavousi z, Karimian A, Jabbari I. Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method. Iranian j Med Phys. 2018;15(3):169-175.Search in Google Scholar

[2] Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol. 2015;6:256.10.3389/fphar.2015.00256463194626581654Search in Google Scholar

[3] Mesbahi A, Famouri F, Ahar MJ, et al. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography. Pol J Med Phys Eng. 2017;23(1):9-14.10.1515/pjmpe-2017-0003Search in Google Scholar

[4] Lee S, Choi YN, Kim HJ. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector. Phys Med Biol. 2014;59(18):5457-5482.10.1088/0031-9155/59/18/545725164993Search in Google Scholar

[5] van Ommen F, Bennink E, Vlassenbroek A, et al. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study. Med Phys. 2018;45(7):3031-3042.10.1002/mp.1295929749624Search in Google Scholar

[6] Kang S, Eom J, Kim B, Lee S. Evaluation of gold K-edge imaging using spectral computed tomography with a photon-counting detector: A Monte Carlo simulation study. Optik. 2017;140:253-260.10.1016/j.ijleo.2017.04.062Search in Google Scholar

[7] Kim J, Bar-Ness D, Si-Mohamed S, et al. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep. 2018;8(1):12119.10.1038/s41598-018-30570-y609232430108247Search in Google Scholar

[8] Badea CT, Clark DP, Holbrook M, et al. Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Phys Med Biol. 2019;64(6):065007.10.1088/1361-6560/ab03e2660744030708357Search in Google Scholar

[9] Si-Mohamed S, Bar-Ness D, Sigovan M, et al. Multicolour imaging with spectral photon-counting CT: a phantom study. Eur Radiol Exp. 2018;2(1):34.10.1186/s41747-018-0063-4619140530327898Search in Google Scholar

[10] Tao S, Rajendran K, McCollough CH, Leng S. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study. Medical Physics. 2019;46(9):4105-4115.10.1002/mp.13668685753131215659Search in Google Scholar

[11] Lu G, Marsh S, Damet J, et al. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements. Australas Phys Eng Sci Med. 2017;40(2):297-303.10.1007/s13246-017-0532-828220403Search in Google Scholar

[12] Jo BD, Park SJ, Kim HM, et al. Spectral computed tomography for quantitative decomposition of vulnerable plaques using a dual-energy technique: a Monte Carlo simulation study. Journal of Instrumentation. 2016;11(02):P02011.10.1088/1748-0221/11/02/P02011Search in Google Scholar

[13] Karunamuni R, Tsourkas A, Maidment AD. Exploring silver as a contrast agent for contrast-enhanced dual-energy X-ray breast imaging. Br J Radiol. 2014;87(1041):20140081.10.1259/bjr.20140081445314024998157Search in Google Scholar

[14] Sun IC, Eun DK, Na JH, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009;15(48):13341-13347.10.1002/chem.20090234419902441Search in Google Scholar

[15] Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: Current status and future perspectives. Nanomedicine (London, England). 2012;7:257-269.10.2217/nnm.11.19022339135Search in Google Scholar

[16] Cole LE, Ross RD, Tilley JM, er al. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (London, England). 2015;10(2):321-341.10.2217/nnm.14.17125600973Search in Google Scholar

[17] Jackson P, Geso M. Gold Nanoparticles as Contrast Media in Dual-energy Radiography: a Monte Carlo Study. Technical Proceedings of the 2010 NSTI Nanotechnology Conference & Expo - Nanotech 2010. Vol 3. pp. 77-80.Search in Google Scholar

[18] Hoseinnezhad M, Mahdavi M, Mahdavi SRM, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radioth Practice. 2018;18(2):191-197.10.1017/S1460396918000638Search in Google Scholar

[19] Rathnayake S, Mongan J, Torres AS, et al. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol Imaging. 2016;11(4):254-261.10.1002/cmmi.1687496912926892945Search in Google Scholar

[20] Ghadiri H, Ay MR, Shiran MB, et al. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging. Br J Radiol. 2013;86(1029):20130308.10.1259/bjr.20130308375540023934964Search in Google Scholar

[21] Cormode DP, Fayad ZA. Nanoparticle contrast agents for CT: Their potential and the challenges that lie ahead. Imaging in Medicine. 2011;3(3):263-266.10.2217/iim.11.17Search in Google Scholar

[22] Hayati H, Mesbahi A. Impact of photon spectra on the sensitivity of polymer gel dosimetry by X-ray computed tomography. Iranian J Med Phys. 2019;16(1):48-55.Search in Google Scholar

[23] Remy C, Lalonde A, Béliveau-Nadeau D, et al. Dosimetric impact of dual-energy CT tissue segmentation for low-energy prostate brachytherapy: a Monte Carlo study. Phys Med Biol. 2018;63(2):025013.10.1088/1361-6560/aaa30c29260727Search in Google Scholar

[24] Lalonde A, Simard M, Remy C, et al. The impact of dual- and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study. Phys Med Biol. 2018;63(19):195012.10.1088/1361-6560/aadf2a30183681Search in Google Scholar

[25] Eom J, Kim B, Kim W, Lee S. Evaluation of material decomposition for pulmonary function test in spectral computed tomography: A Monte Carlo simulation study. Optik. 2018;174:409-415.10.1016/j.ijleo.2018.08.093Search in Google Scholar

[26] Ehn S, Sellerer T, Mechlem K, et al. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model. Phys Med Biol. 2017;62(1):N1-N17.10.1088/1361-6560/aa4e5c27973355Search in Google Scholar

[27] Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes. Radiol Phys Technol. 2016;9(1):37-43.10.1007/s12194-015-0331-426205316Search in Google Scholar

[28] Nasirudin R, Penchev P, Mei K, et al. A Monte Carlo software bench for simulation of spectral k-edge CT imaging: Initial results. Physica Medica. 2015;31(4):398-405.10.1016/j.ejmp.2015.03.00325840620Search in Google Scholar

[29] Pelowitz DB: MCNPX user’s manual version (2.6.0).; Los Alamos National Laboratory. 2008.Search in Google Scholar

[30] Jo B, Im HS, Kim HJ, Son TJ. The potential of spectral-CT for material decomposition with gold-nanoparticle and iodine contrast. IFMBE Proceeding. 2015;51:22-25.10.1007/978-3-319-19387-8_6Search in Google Scholar

[31] Jakhmola A, Anton N, Vandamme T. Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography. Adv Healthc Mater. 2012;1(4):413-431.10.1002/adhm.20120003223184772Search in Google Scholar

[32] Brown AL, Naha PC, Benavides-Montes V, et al. Synthesis, X-ray Opacity, and Biological Compatibility of Ultra-High Payload Elemental Bismuth Nanoparticle X-ray Contrast Agents. Chemistry Mater. 2014;26(7):2266-2274.10.1021/cm500077z398573824803727Search in Google Scholar

[33] Hainfeld JF, O’Connor MJ, Dilmanian FA, et al. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Brit J Radiol. 2011;84(1002):526-533.10.1259/bjr/42612922347362921081567Search in Google Scholar

[34] Chuang Y-C, Hsia Y, Chu C-H, et al. Precision control of the large-scale green synthesis of biodegradable gold nanodandelions as potential radiotheranostics. Biomaterials Science. 2019;7(11):4720-4729.10.1039/C9BM00897G31495835Search in Google Scholar

[35] Li C-H, Kuo T, Su H-J, et al. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection. Scientific Reports. 2015;5:15675.10.1038/srep15675462347526507179Search in Google Scholar

[36] Dong YC, Hajfathalian M, Maidment PSN, et al. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Scientific Reports. 2019;9(1):14912.10.1038/s41598-019-50332-8679774631624285Search in Google Scholar

[37] Algethami M, Blencowe A, Feltis B, Geso M. Bismuth Sulfide Nanoparticles as a Complement to Traditional Iodinated Contrast Agents at Various X-Ray Computed Tomography Tube Potentials. J Nanomater Mol Nanotechnol. 2017;6(4).10.4172/2324-8777.1000222Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics