Open Access

A Monte Carlo investigation of the dose distribution for new I-125 Low Dose Rate brachytherapy source in water and in different media


Cite

[1] Russell KJ, Blasko JC. Recent advances in interstitial brachytherapy for localized prostate cancer. in: Therapeutic strategies in prostate cancer. Problems in urology series. Vol. 7. 4th edition. J. B. Lippincott Co, Philadelphia; 1993: 260-278.Search in Google Scholar

[2] Ghiassi-Nejad M, Jafarizadeh M, Ahmadian-Pour MR, Ghahramani AR. Dosimetric characteristics of 192Ir sources used in interstitial brachytherapy. Appl Radiat Isot. 2001;55(2):189-195.10.1016/S0969-8043(00)00375-4Search in Google Scholar

[3] Nath R, Anderson LL, Luxton G, et al. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995;22(2):209-234.10.1118/1.597458Search in Google Scholar

[4] Heintz BH, Wallace RE, Hevezi JM. Comparison of I-125 sources used for permanent interstitial implants. Med Phys. 2001;28(4):671-682.10.1118/1.1359246Search in Google Scholar

[5] Rivard MJ, Butler WM, DeWerd LA, et al. Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys. 2007;34(6):2187-2205.10.1118/1.2736790Search in Google Scholar

[6] Solberg TD, DeMarco JJ, Hugo G, Wallace RE. Dosimetric parameters of three new solid core I-125 brachytherapy source. J Appl Clin Med Phys. 2002;3(2):119-134.10.1120/jacmp.v3i2.2576Search in Google Scholar

[7] Wallace RE. Dosimetric characterization of a new 125Iodine brachytherapy source, model I125-SL. Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143), Chicago, IL, 2000, pp. 376-379 vol.1.Search in Google Scholar

[8] Lohrabian V, Sheibani S, Aghamiri MR, et al. Determination of Dosimetric Characteristics of IrSeed I-125 Brachytherapy Source. Iran J Med Phys. 2013;10(3):109-117.Search in Google Scholar

[9] Forster RA, Cox LJ, Barrett RF, et al. MCNP Version 5. Nucl Instrum Meth Phys Res B. 2004;213:82-86.10.1016/S0168-583X(03)01538-6Search in Google Scholar

[10] Rajabi R, Taherparvar P. Monte Carlo dosimetry for a new 32P brachytherapy source using FLUKA code. J Contemp Brachytherapy. 2019. doi:10.5114/jcb.2019.83002.10.5114/jcb.2019.83002Search in Google Scholar

[11] Thiam CO, Breton V, Donnarieix D, Habib B, et al. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys Med Biol. 2008;53(11):3039-3055.10.1088/0031-9155/53/11/019Search in Google Scholar

[12] Agostinelli S, Allison J, Amako K, et al. Geant4 - a simulation toolkit. Nucl Instrum Meth A. 2003;506(3):250-303.10.1016/S0168-9002(03)01368-8Search in Google Scholar

[13] Nelson WR, Hirayama H, Rogers DWO. The EGS4 code system, Report SLAC-265. Stanford Linear Accelerator Center, Stanford, CA, USA, 1985.Search in Google Scholar

[14] Meigooni AS, Yoe-Sein MM, Al-Otoom AY, Sowards KT. Determination of the dosimetric characteristics of InterSource125 Iodine brachytherapy source. Appl Radiat Isot. 2001;56(4):589-599.10.1016/S0969-8043(01)00258-5Search in Google Scholar

[15] Rodríguez EAV, Alcón EPQ, Rodriguez ML, et al. Dosimetric parameters estimation using PENELOPE MonteCarlo simulation code: Model 6711 a I-125 brachytherapy seed. Appl Radiat Isot. 2005;63(1):41-48.10.1016/j.apradiso.2005.02.004Search in Google Scholar

[16] Rivard MJ. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 I-125 brachytherapy sources. Med Phys. 2009;36(2):486-491.10.1118/1.3056463Search in Google Scholar

[17] Baghani HR, Lohrabian V, Aghamiri MR, Robatjazi M. Monte Carlo Determination of Dosimetric Parameters of a New I-125 Brachytherapy Source According to AAPM TG-43 (U1) Protocol. Arch Iran Med. 2016;19(3):186-191.Search in Google Scholar

[18] Rivard MJ, Corsey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med. Phys. 2004;31(3):633-674.10.1118/1.1646040Search in Google Scholar

[19] Taherparvar P, Sadremomtaz A. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas Phys Eng Sci Med. 2018;41:31-38.10.1007/s13246-017-0607-6Search in Google Scholar

[20] NCRP. A handbook of radioactivity measurements procedures; NCRP Report No. 58. Bethesda: National Council on Radiation Protection and Measurements, 1985.Search in Google Scholar

[21] Badry H, Oufni L, Ouabi H, Hirayama H. A Monte Carlo investigation of the dose distribution for 60Co high dose rate brachytherapy source in water and in different media. Appl Radiat Isot. 2018;136:104-110.10.1016/j.apradiso.2018.02.016Search in Google Scholar

[22] Ghorbani M, Salahshour F, Haghparast A, et al. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. J Contemp Brachytherapy. 2014;6(1):54-67.10.5114/jcb.2014.42024Search in Google Scholar

[23] International Commission on Radiation Units and Measurements, 1989. Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report no. 44. Bethesda, MD.Search in Google Scholar

[24] Sowards KT, Meigooni AS. A Monte Carlo evaluation of the dosimetric characteristics of the Bests Model 2301 125I brachytherapy source. Appl Radiat Isot. 2002;57(3):327-333.10.1016/S0969-8043(02)00124-0Search in Google Scholar

[25] Meigooni AS, Gearheart DM, Sowards K. Experimental determination of dosimetric characteristics of Best® 125I brachytherapy source. Med Phys. 2000;27(9):2168-2173.10.1118/1.128925611011747Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics