Cite

[1] IAEA (International Atomic Energy Agency). Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical Report Series no.398. IAEA, Vienna. 2000.Search in Google Scholar

[2] Vasile G, Vasile M, Duliu OG. In-vivo dosimetry measurements for breast radiation treatments. Romanian Rep Phys. 2012;64(3):728-736.Search in Google Scholar

[3] Van Dam J, Marinello G. Methods for in-vivo dosimetry in external radiotherapy. ESTRO booklet No.1. 2006.Search in Google Scholar

[4] van Elmpt W, McDermott L, Nijstenn S, et al. A literature review of electronic portal imaging for radiation dosimetry. Radiother Oncol. 2008;88(3):289-309.10.1016/j.radonc.2008.07.00818706727Search in Google Scholar

[5] Shrivastava SK, Mahantshetty U, Narayan K. Principles of radiation therapy in low-resource and well-developed settings, with particular reference to cervical cancer. Int J Gynaecol Obstet. 2015;131(S2):153-158.10.1016/j.ijgo.2015.06.01326433673Search in Google Scholar

[6] Leal MA, Viegas C, Viamonte A, et.al. Thermoluminescent chip detector for in-vivo dosimetry in pelvis and head and neck cancer treatment. Appl Radiat Isot. 2010;68(4-5):795-798.10.1016/j.apradiso.2009.12.02720133140Search in Google Scholar

[7] Evwierhurhoma OB, Ibitoye ZA, Ojieh CA, et al. Verification of entrance dose measurements with thermoluminescent dosimeters in conventional radiotherapy procedures delivered with Co-60 teletherapy machine. Ann Med Health Sci Res. 2015;5(6):409-412.10.4103/2141-9248.177977480465227057379Search in Google Scholar

[8] Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol. 2014;59(20):R303-R347.10.1088/0031-9155/59/20/R30325229250Search in Google Scholar

[9] Greer PB, Popescu C. Dosimetric properties of an amphorous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med.Phys. 2003;30(7):1618-1627.10.1118/1.1582469Search in Google Scholar

[10] McCurdy BM, Luchka K, Pistorius S. Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device. Med.Phys. 2001;28(6):911-924.10.1118/1.1374244Search in Google Scholar

[11] Winkler P, Hefner A, Georg D. Dose-response characteristics of an amorphous silicon EPID. Med Phys. 2005;32(10):3095-3105.10.1118/1.204071116279061Search in Google Scholar

[12] Camilleri J, Mazurier J, Franck D, et.al. Clinical results of an EPID-based in- vivo dosimetry method for pelvic cancers treated by intenstity modulated radio therapy. Phys Med. 2014;30(6):690-695.10.1016/j.ejmp.2014.02.00324656798Search in Google Scholar

[13] Huyskens D, Van Dam J, Dutreix A. Mid plane dose determination using in-vivo dose measurements in combination with portal imaging. Phys Med Biol. 1994;39(7):1089-1102.10.1088/0031-9155/39/7/00315552099Search in Google Scholar

[14] Morton JP, Bhat M, Williams T, Kovendy A. Clinical results of entrance dose in-vivo dosimetry for high energy photons in external beam radiotherapy using MOSFETs. Austral Phys Eng Sci Med. 2007;30(4):252-259.10.1007/BF0317843418274064Search in Google Scholar

[15] Strojnik A. In-vivo dosimetry with diodes in rectal cancer patients. Radiol Onco. 2007;41(4):196-202.10.2478/v10019-007-0031-8Search in Google Scholar

[16] Costa AM, Barbi GL, Bertucci EV, et al. In-vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy. Appl Radiat Isot. 2010;68(4-5):760-762.10.1016/j.apradiso.2009.09.03919819151Search in Google Scholar

[17] Gandhi MA, Buzdar SA, Fatmi S. In-Vivo dosimetry with diode for the treatment of pelvic malignancies. Austin Oncol Case Rep. 2016;1(1):1004:1-4.Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics