Cite

1. Nur Hanis Abd Latif, Afidah Abdul Rahim & Nicolas Brosse (2019). The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. Int. J. Biol. Macromol. 130, 947-957. DOI: 10.1016/j.ijbiomac.2019.03.032Open DOISearch in Google Scholar

2. Pouteau, C., Dole, P., Cathala, B., Averous, L. & Boquillon, N. (2003). Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stability 81(1), 9–18. DOI: 10.1016/S0141-3910(03)00057-0.Open DOISearch in Google Scholar

3. Muhammad, N., Man, Z., Bustam, M.A., Mutalib, M.I.A. & Rafiq, S. (2013). Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J. Ind. Engin. Chem. 19(1). DOI: 10.1016/j.jiec.2012.08.003.Open DOISearch in Google Scholar

4. Pan, X., Kadla, J.F., Ehara, K., Gilkes, N. & Saddler, J.N.(2006). Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger:? Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 54(16), 5806–5813. DOI: 10.1021/jf0605392.Open DOISearch in Google Scholar

5. Pu, Y., Jiang, N. & Ragauskas, A.J. (2007). Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. & Technol. 27(1), p. 23–33. DOI: 10.1080/02773810701282330.Open DOISearch in Google Scholar

6. Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. & Engin. Chem. Res. 48(8), 3713–3729. DOI: 10.1021/ie801542g.Open DOISearch in Google Scholar

7. Cotana, F., Cavalaglio, G., Nicolini, A., Gelosia, M., Coccia, V., Petrozzi, A. & Brinchi, L. (2014). Lignin as Coproduct of Second Generation Bioethanol Production from Ligno-cellulosic Biomass. Energy Procedia 45, 52–60. DOI: 10.1016/j.egypro.2014.01.007.Open DOISearch in Google Scholar

8. Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M.E., Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Ind. Crops Prod. 129, 123–134. DOI: 10.1016/j.indcrop.2018.11.067.Open DOISearch in Google Scholar

9. YáEz-S, M., Matsuhiro, B., Nuez, C., Pan, S., Hubbell, C.A., Sannigrahi, P. & Ragauskas, A.J. (2014). Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polym. Degrad. Stab. 110, 184–194. DOI: 10.1016/j.polymdegradstab.2014.08.026.Open DOISearch in Google Scholar

10. Wang, G. & Chen, H. (2016). Enhanced lignin extraction process from steam exploded corn stalk. Separ. Purific. Technol. 157, 93–101. DOI: 10.1016/j.seppur.2015.11.036.Open DOISearch in Google Scholar

11. Gadioli, R., Morais, J.A., Waldman, W.R. & Paoli, M.A.D. (2014). The role of lignin in polypropylene composites with semi-bleached cellulose fibers: Mechanical properties and its activity as antioxidant. Polym. Degrad. Stab. 108 (oct.), 23–34. DOI: 10.1016/j.polymdegradstab.2014.06.005.Open DOISearch in Google Scholar

12. Gregorova, A., Cibulkova, Z., Kosikova, B. & Simon, P. (2005). Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stability 89 (3), 553–558. DOI: 10.1016/j.polymdegradstab.2005.02.007.Open DOISearch in Google Scholar

13. Li, Z., Zhang, J., Qin, L. & Ge, Y. (2018). Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustainable Chem. Eng. 6(2). DOI: 10.1021/acssuschemeng.7b04070Open DOISearch in Google Scholar

14. Ye, D., Kong, J., Gu, S., Zhou, Y. & Zhang, X. (2017). Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene. Internat. J. Biolog. Macromol. 108, 775–781. DOI: 10.1016/j.ijbiomac.2017.10.168Open DOISearch in Google Scholar

15. Morandim-Giannetti, A.A., Agnelli, J.A.M., Lan?as, B.Z., Magnabosco, R., Casarin, S.A. & Bettini, S.H.P. (2012). Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers 87 (4), 2563–2568. DOI: 10.1016/j.carbpol.2011.11.041.Open DOISearch in Google Scholar

16. Pang, Y., Wang, S., Qiu, X., Luo, Y., Lou, H., Huang, J. (2017). Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation. J. Agric. Food Chem. 65(50), 11011–11019. DOI: 10.1021/acs.jafc.7b03784.Open DOISearch in Google Scholar

17. Crouvisier-Urion, K., Bodart, P.R., Winckler, P., Raya, J., Gougeon, R.D., Cayot, P., Domenek, S., Debeaufort, F. & Karbowiak, T. (2016). Bio-based composite films from chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.6b00956.Open DOISearch in Google Scholar

18. Pouteau, C., Cathala, B., Dole, P., Kurek, B. & Monties, B. (2005). Structural modification of Kraft lignin after acid treatment: characterisation of the apolar extracts and influence on the antioxidant properties in polypropylene. Ind. Crops Products 21(1), 101–108. DOI: 10.1016/j.indcrop.2004.01.003.Open DOISearch in Google Scholar

19. Kai, D., Ren, W., Tian, L., Chee, P.L., Liu, Y., Ramakrishna, S. & Loh, X.J. (2016). Engineering poly(lactide)-lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chem. Eng. 4(10), 5268–5276. DOI: 10.1021/acssuschemeng.6b00478.Open DOISearch in Google Scholar

20. Chen, F., Liu, W., Seyed Shahabadi, S.I., Xu, J., Lu, X. (2016). Sheet-Like Lignin Particles as Multifunctional Fillers in Polypropylene. ACS Sustainable Chem. Eng. 4(9) 4997–5004. DOI: 10.1021/acssuschemeng.6b01369.Open DOISearch in Google Scholar

21. Sadeghifar, H. & Argyropoulos, D.S. (2015). Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustainable Chem. Eng. 3(2), 349–356. DOI: 10.1021/sc500756n.Open DOISearch in Google Scholar

22. Li, M.-F., Sun, S.-N., Xu, F. & Sun, R.-C. (2012). Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation. Food Chem. 134(3), 1392–1398. DOI: 10.1016/j.foodchem.2012.03.037.Open DOISearch in Google Scholar

23. Ugartondo, V., Mitjans, M. & Vinardell, M.P. (2008). Comparative antioxidant and cytotoxic effects of lignins from different sources. Biores. Technol. 99(14), 6683–6687. DOI: 10.1016/j.biortech.2007.11.038.Open DOISearch in Google Scholar

24. Shuai, Z., Lu, L., Bo, W., Feng, X. & Sun, R. (2012). Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochem. 47(12), 1799–1806. DOI: 10.1016/j.procbio.2012.06.006.Open DOISearch in Google Scholar

25. An, L., Wang, G., Jia, H., Liu, C., Sui, W. & Si, C. (2017). Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Internat. J. Biolog. Macromolec. 99, 674–681. DOI: 10.1016/j.ijbiomac.2017.03.015.Open DOISearch in Google Scholar

26. Ahuja, D., Kaushik, A. & Singh, M. (2017). Simultaneous Extraction of Lignin and Cellulose Nanofibrils from waste jute bags using One Pot Pre-treatment. Internat. J. Biolog. Macromol. 107 A: 1294–1301. DOI: 10.1016/j.ijbiomac.2017.09.107.Open DOISearch in Google Scholar

27. Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. & Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4(1), 26–32. DOI: 10.1016/j.jmrt.2014.10.009.Open DOISearch in Google Scholar

28. Avelino, F., Teixeira da Silva, K., de Souza Filho, M. d. S.M., Mazzetto, S.E. & Lomonaco, D. (2018). Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts. J. Cleaner Prod. 189, 785–796. DOI: 10.1016/j.jclepro.2018.04.126.Open DOISearch in Google Scholar

29. Natividade, L.F., Reinoldo, S.F., Elaine, W., Oliveira, B.R.L. d., Edna, P. & Stival, B.P.R. (2018). Thermal Evaluation by DSC and Tensile Strength of Extrudated Blends from Polyethylene Terephthalate and Kraft Lignin. Waste & Biomass Valorization. 11, 367–373. DOI: 10.1007/s12649-018-0367-x.Open DOISearch in Google Scholar

30. Pinkert, A., Goeke, D.F., Marsh, K.N. & Pang, S. (2011). Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chemistry, 13, 3124–3136. DOI: 10.1039/C1GC15671C.Open DOISearch in Google Scholar

31. Gonç Alves, F.A., Ruiz, H.A., Silvino dos Santos, E., Teixeira, J.A. & de Macedo, G.R. (2016). Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy 94, 353–365. DOI: 10.1016/j.renene.2016.03.045.Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering