Open Access

Three phase partitioning as a rapid and efficient method for purification of plant-esterase from wheat flour


Cite

1. Liu, R.H., Yang, C,. Xu, Y.M., Xu, P., Jiang, H. & Qiao, C.L. (2013). Development of a Whole-Cell Biocatalyst/Biosensor by Display of Multiple Heterologous Proteins on the Escherichia coli Cell Surface for the Detoxification and Detection of Organophosphates. J. Agric. Food Chem. 61, 7810–7816. DOI: 10.1021/jf402999b.10.1021/jf402999b23875606Search in Google Scholar

2. Singh, B.K. (2009). Organophosphorus-degrading bacteria: ecology and industrial applications. J. Nat. Rev. Microbiol. 7, 156–164. DOI: 10.1038/nrmicro2050.10.1038/nrmicro205019098922Search in Google Scholar

3. Wang, M., Gu, X., Zhang, G., Zhang, D. & Zhu, D. (2009). Continuous Colorimetric Assay for Acetylcholinesterase and Inhibitor Screening with Gold Nanoparticles. J. Langmuir. 25, 2504–2507. DOI: 10.1021/la803870v.10.1021/la803870v19154124Search in Google Scholar

4. Zhang, L., Zhang, A., Du, D. & Lin, Y. (2012). Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. J. Nanoscale. 4, 4674–4679. DOI: 10.1039/c2nr30976a.10.1039/c2nr30976a22732870Search in Google Scholar

5. Wei, M. & Wang, J. (2015). A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. J. Sens. Actuator B-Chem. 211, 290–296. DOI: 10.1016/j.snb.2015.01.112.10.1016/j.snb.2015.01.112Search in Google Scholar

6. Xia, N., Wang, Q. & Liu, L. (2015). Nanomaterials-Based Optical Techniques for the Detection of Acetylcholinesterase and Pesticides. J. Sensors 15, 499–514. DOI: 10.3390/s150100499.10.3390/s150100499432703225558991Search in Google Scholar

7. Zhao, H., Ji, X., Wang, B., Wang, N., Li, X., Ni, R. & Ren, J. (2015). An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles- beta-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens. & Bioelectr. 65, 23–30. DOI: 10.1016/j.bios.2014.10.007.10.1016/j.bios.2014.10.00725461134Search in Google Scholar

8. Yang, L., Huo, D., Hou, C., He, K., Lv, F., Fa, H. & Luo, X. (2010). Purification of plant-esterase in PEG1000/NaH2PO4 aqueous two-phase system by a two-step extraction. J. Process Biochem. 45, 1664–1671. DOI: 10.1016/j.procbio.2010.06.018.10.1016/j.procbio.2010.06.018Search in Google Scholar

9. Cummins, I., Burnet, N. & Edwards, R. (2001). Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. J. Physiol. Plantarum. 113, 477–485. DOI: 10.1034/j.1399-3054.2001.1130406.x.10.1034/j.1399-3054.2001.1130406.xSearch in Google Scholar

10. Cummins, I. & Edwards, R. (2004). Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant J. 39, 894–904. DOI: 10.1111/j.1365--313X.2004.02174.x.10.1111/j.1365-313X.2004.02174.xSearch in Google Scholar

11. Huo, D., Yang, L. & Hou, C. (2009). Optical Detection of Dimethyl Methyl-Phosphonate with Monosulfonate Tetraphenyl Porphyrin-Plant-Esterase Complex. J. Sensor Letters. 7, 72–78. DOI: 10.1166/sl.2009.1012.10.1166/sl.2009.1012Search in Google Scholar

12. Bao, J., Hou, C., Chen, M., Li, J., Huo, D., Yang, M., Luo, X. & Lei, Y. (2015). Plant Esterase-Chitosan/Gold Nanoparticles-Graphene Nanosheet Composite-Based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides. J. Agric. Food Chem. 63, 10319–10326. DOI: 10.1021/acs. jafc.5b03971.10.1021/acs.jafc.5b03971Search in Google Scholar

13. Li, J.K., Zhou, Y.L., Wen, Y.X., Wang, J.H. & Hu, Q.H. (2009). Studies on the Purification and Characterization of Soybean Esterase, and Its Sensitivity to Organophosphate and Carbamate Pesticides. J. Agric. Sci. China. 8, 455–463. DOI: 10.1016/S1671-2927(08)60232-1.10.1016/S1671-2927(08)60232-1Search in Google Scholar

14. Jiang, B., Feng, Z., Liu, C., Xu, Y., Li, D. & Ji, G. (2015). Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt. J. Food Sci. Technol.-Mysore. 52, 2878–2885. DOI: 10.1007/s13197-014-1319-5.10.1007/s13197-014-1319-5Search in Google Scholar

15. Diamond, A.D. & Hsu, J.T. (1992). Aqueous two-phase systems for biomolecule separation. Adv. Biochem. Engineer. Biotechnol. 47, 89–135. DOI: 10.1007/BFb0046198.10.1007/BFb0046198Search in Google Scholar

16. Sagu, S.T., Nso, E.J., Homann, T., Kapseu, C. & Rawel, H.M. (2015). Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. J. Food Chem. 183, 144–153. DOI: 10.1016/j.foodchem.2015.03.028:10.1016/j.foodchem.2015.03.028Search in Google Scholar

17. Ozer, B., Akardere, E., Celem, E.B. & Onal, S. (2010). Three-phase partitioning as a rapid and efficient method for purification of invertase from tomato. Biochem. Eng. J. 50, 110–115. DOI: 10.1016/j.bej.2010.04.002.10.1016/j.bej.2010.04.002Search in Google Scholar

18. Dennison, C. & Lovrien, R. (1997). Three phase partitioning: Concentration and purification of proteins. J. Protein Express. Purific. 11, 149–161. DOI: 10.1006/prep.1997.0779.10.1006/prep.1997.0779Search in Google Scholar

19. Gagaoua, M., Boucherba, N., Bouanane-Darenfed, A., Ziane, F., Nait-Rabah, S., Hafid, K. & Boudechicha, HR. (2014). Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex. J. Separat. Purific. Technol. 132, 461–467. DOI: 10.1016/j.seppur.2014.05.050.10.1016/j.seppur.2014.05.050Search in Google Scholar

20. Duman, Y. & Kaya, E. (2013). Purification, recovery, and characterization of chick pea (Cicer arietinum) beta-galactosidase in single step by three phase partitioning as a rapid and easy technique. J. Protein Express. Purific. 91, 155–160. DOI: 10.1016/j.pep.2013.08.003:10.1016/j.pep.2013.08.003Search in Google Scholar

21. Akardere, E., Ozer, B., Celem, E.B. & Onal, S. (2010). Three-phase partitioning of invertase from Baker’s yeast. J. Separat. Purific. Technol. 72, 335–339. DOI: 10.1016/j.seppur.2010.02.025.10.1016/j.seppur.2010.02.025Search in Google Scholar

22. Moelbert, S., Normand, B. & Rios, PD. (2004). Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. J. Biophys. Chem. 112, 45–57. DOI: 10.1016/j.bpc.2004.06.012.10.1016/j.bpc.2004.06.012Search in Google Scholar

23. Vanasperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. J. Insect. Physiol. 8, 401–416. DOI: 10.1016/0022-1910(62)90074-4.10.1016/0022-1910(62)90074-4Search in Google Scholar

24. Bradford, M.M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. J. Anal. Biochem. 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3Search in Google Scholar

25. Laemmli, U.K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage-t4. J. Nature 227, 680–685. DOI: 10.1038/227680a0.10.1038/227680a05432063Search in Google Scholar

26. Gagaoua, M., Hoggas, N. & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Internat. J. Biologic. Macromol. 73, 245–252. DOI: 10.1016/j.ijbiomac.2014.10.069.10.1016/j.ijbiomac.2014.10.06925475843Search in Google Scholar

27. Vetal, M.D., Shirpurkar, N.D. & Rathod, V.K. (2014). Three phase partitioning coupled with ultrasound for the extraction of ursolic acid and oleanolic acid from Ocimum sanctum. J. Food Bioprod. Process. 92, 402–408. DOI: 10.1016/j. fbp.2013.09.002.10.1016/j.fbp.2013.09.002Search in Google Scholar

28. Narayan, A.V., Madhusudhan, M.C. & Raghavarao, K. (2008). Extraction and Purification of Ipomoea Peroxidase Employing Three-phase Partitioning. J. Appl. Biochem. Biotech. 151, 263–272. DOI: 10.1007/s12010-008-8185-4.10.1007/s12010-008-8185-418369532Search in Google Scholar

29. Vetal, M.D. & Rathod, V.K. (2015). Three phase partitioning a novel technique for purification of peroxidase from orange peels (Citrus sinenses). J. Food Bioprod. Process. 94, 284–289. DOI: 10.1016/j.fbp.2014.03.007.10.1016/j.fbp.2014.03.007Search in Google Scholar

30. Pike, R.N. & Dennison, C. (1989). Protein Fractionation by 3 Phase Partitioning (Tpp) In Aqueous Tert-Butanol Mixtures. J. Biotech. Bioeng. 33, 221–228. DOI: 10.1002/bit.260330213.10.1002/bit.26033021318587905Search in Google Scholar

31. Qiao, Y.Y., Tong, J.F., Wei, S.Q., Du, X.Y. & Tang, X.Z. (2009). Economic methods of ginger protease’s extraction and purification. p. 1619–1628. DOI: 10.1007/978-1-4419-0213-9_12.10.1007/978-1-4419-0213-9_12Search in Google Scholar

32.Nafi’, A., Ling, F.H., Bakar, J. & Ghazali, H.M. (2014). Partial Characterization of an Enzymatic Extract from Bentong Ginger (Zingiber officinale var. Bentong). J. Molecules. 19, 12336–12348. DOI: 10.3390/molecules190812336.10.3390/molecules190812336627189825153861Search in Google Scholar

33. Wati, R.K., Theppakorn, T., Benjakul, S. & Rawdkuen, S. (2009). Three-phase partitioning of trypsin inhibitor from legume seeds. J. Process. Biochem. 44, 1307–1314. DOI: 10.1016/j.procbio.2009.07.002.10.1016/j.procbio.2009.07.002Search in Google Scholar

34. Rajeeva, S. & Lele, SS. (2011). Three-phase partitioning for concentration and purification of laccase produced by submerged cultures of Ganoderma sp. WR-1. Biochem. Eng. J. 54. DOI: 10.1016/j.bej.2011.02.006.10.1016/j.bej.2011.02.006Search in Google Scholar

35. Duman, Y.A. & Kaya, E. (2013). Three-Phase Partitioning as a Rapid and Easy Method for the Purification and Recovery of Catalase from Sweet Potato Tubers (Solanum tuberosum). J. Appl. Biochem. Biotechnol. 170, 1119–1126. DOI: 10.1007/s12010-013-0260-9.10.1007/s12010-013-0260-923640263Search in Google Scholar

36. Kumar, V.V., Sathyaselvabala, V., Premkumar, M.P., Vidyadevi, T. & Sivanesan, S. (2012). Biochemical characterization of three phase partitioned laccase and its application in decolorization and degradation of synthetic dyes. J. Molec. Catal. B-Enzymatic. 74, 63–72. DOI: 10.1016/j.molcatb.2011.08.015.10.1016/j.molcatb.2011.08.015Search in Google Scholar

37. Bayraktar, H. & Onal, S. (2013). Concentration and purification of alpha-galactosidase from watermelon (Citrullus vulgaris) by three phase partitioning. J. Separat. Purific. Technol. 118, 835–841. DOI: 10.1016/j.seppur.2013.08.040.10.1016/j.seppur.2013.08.040Search in Google Scholar

38. Dogan, N. & Tari, C. (2008). Characterization of three--phase partitioned exo-polygalacturonase from Aspergillus sojae with unique properties. J. Biochem. Eng. 39, 43–50. DOI: 10.1016/j.bej.2007.08.008.10.1016/j.bej.2007.08.008Search in Google Scholar

39. Garg, R. & Thorat, B.N. (2014). Nattokinase purification by three phase partitioning and impact of t-butanol on freeze drying. J. Separ. Purific. Technol. 131, 19–26. DOI: 10.1016/j. seppur.2014.04.011.10.1016/j.seppur.2014.04.011Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering