Open Access

Air Separation Units (ASUs) Simulation Using Aspen Hysys® at Oxinor I of Air Liquid Chile S.A Plant


Cite

1. Cochilco. Cochilco – Estadísticas (2016). http://www.cochilco.cl:4040/boletin-web/pages/tabla16/buscar.jsf (accessed February 9, 2017).Search in Google Scholar

2. Smith, AR & Klosek, J.A. (2001). Review of Air Separation Technol. and Their Integration with Energy Conversion Processes. Fuel Process Technol. 70, 115–34. DOI: 10.1016/S0378-3820(01)00131-X.10.1016/S0378-3820(01)00131-XSearch in Google Scholar

3. Wang, M., Oyedun, A.O., Pahija, E., Zhu, Y., Liu, G. & Hui, CW. (2015). Integration and optimization of an air separation unit (ASU) in an IGCC plant. 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. vol. 37. DOI: 10.1016/B978-0-444-63578-5.50080-3.10.1016/B978-0-444-63578-5.50080-3Search in Google Scholar

4. Asma-Ul-Husna, Razia, H.Sk., Aysha, R. & Muhammad Ruhul, A. (2015). Energy saving in cryogenic air separation process applying self heat recuperation technology. Int. Conf. Mechanical Eng. Renew., Chittagong: ICMERE201. 5, p. 26–9.Search in Google Scholar

5. Cao, Y., Swartz, CLE, Baldea, M. & Blouin, S. (2015). Optimization-based assessment of design limitations to air separation plant agility in demand response scenarios. J. Process Control. 33, 37–48. DOI: 10.1016/j.jprocont.2015.05.002.10.1016/j.jprocont.2015.05.002Search in Google Scholar

6. Van Der Ham, L.V. (2012 ). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Convers Manag. 61, 31–42. DOI: 10.1016/j.enconman.2012.03.004.10.1016/j.enconman.2012.03.004Search in Google Scholar

7. Vila, P.L.C. & Serrano, M.A.L. (2002). Optimización de plantas criogénicas de producción de oxígeno. 15, 2509–14.Search in Google Scholar

8. Kim, Y.S., Park, S.K., Lee, J.J., Kang, D.W. & Kim, T.S. (2013). Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants. Energy. 55, 977–86. DOI: 10.1016/j.energy.2013.03.041.10.1016/j.energy.2013.03.041Search in Google Scholar

9. Al-Lagtah, N.M.A., Al-Habsi, S. & Onaizi, S.A. (2015). Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS. J. Nat. Gas. Sci. Eng. 26, 367–81. DOI: 10.1016/j.jngse.2015.06.030.10.1016/j.jngse.2015.06.030Search in Google Scholar

10. Jieyu, Z., Yanzhong, L., Guangpeng, L. & Biao, S. (2015). Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy. Phys. Procedia. 67, 116–22. DOI: 10.1016/j.phpro.2015.06.021.10.1016/j.phpro.2015.06.021Search in Google Scholar

11. Hart, A. & Gnanendran, N. (2009). Cryogenic CO2 capture in natural gas. Energy Procedia. 1, 697–706. DOI: 10.1016/j.egypro.2009.01.092.10.1016/j.egypro.2009.01.092Search in Google Scholar

12. Proust, P. & Vera, J.H. (1989). PRSV: The stryjek & vera modification of the peng-robinson equation of state. Parameters for other pure compounds of industrial interest. Can. J. Chem. Eng. 67, 170–3. DOI: 10.1002/cjce.5450670125.10.1002/cjce.5450670125Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering