Open Access

Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology


Cite

1. WHO (2006), In: Guidelines for Drinking-water Quality, Vol. 1. WHO Library Cataloguing-in-Publication Data, Geneva.Search in Google Scholar

2. Kalak, T. & Strus, B. (2014). Influence of Selected Surfactants and High-Octane Oxygen Components on Water Content, Electrolytic Conductivity in Gasoline, and Interfacial Tension in the Water/Gasoline System. Energy&Fuels. 28, 1926−1939. DOI: 10.1021/ef4018338.10.1021/ef4018338Open DOISearch in Google Scholar

3. Wani, A.L., Ara, A. & Usmani, J.A. (2015). Lead toxicity: a review. Interdiscip. toxicol. 8, 55–64. DOI: 10.1515/intox-2015-0009.10.1515/intox-2015-0009496189827486361Open DOISearch in Google Scholar

4. ATSDR’s Substance Priority List (2017), The Agency for Toxic Substances and Disease Registry (ATSDR).Search in Google Scholar

5. Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews. 4, 1–24. DOI: 10.1002/cben.201600010.10.1002/cben.201600010Open DOISearch in Google Scholar

6. Young, R.T. (2003). Adsorbents: fundamentals and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, ISBN 0-471-29741-0.10.1002/047144409XSearch in Google Scholar

7. Kalak, T., Dudczak, J. & Cierpiszewski, R. (2015). Adsorption behaviour of copper ions on elderberry, gooseberry and paprika waste from aqueous solutions. Proceedings of 12th International Interdisciplinary Meeting on Bioanalysis (CECE), Brno, Czech Republic, 123–127.Search in Google Scholar

8. Kalak, T. & Cierpiszewski, R. (2018). Adsorptive removal of copper and cadmium ions using fly ash resulting from CFBC technology. Proceedings of 15th International Interdisciplinary Meeting on Bioanalysis (CECE), Brno, Czech Republic, 177–181.Search in Google Scholar

9. Environmental Protection 2014. Statistical Yearbook of GUS, Warsaw, 2014.Search in Google Scholar

10. Milieu Ltd, WRc, RPA and DG Environment (2008). Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final report for the European Commission.Search in Google Scholar

11. AKPGO, Update National Waste Management Plan 2014, Warsaw, 2015.Search in Google Scholar

12. Nowak, B., Aschenbrenner, P. & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – A comparison. Fuel Process. Technol. 105, 195–201. DOI: 10.1016/j.fuproc.2011.06.027.10.1016/j.fuproc.2011.06.027Open DOISearch in Google Scholar

13. Wassilkowska, A., Czaplicka-Kotas, A., Bielski, A., Zielina, M. (2014). An analysis of the elemental composition of micro-samples using EDS technique. Tech. Trans. 18, 133–148. DOI: 10.4467/2353737XCT.14.283.3371.10.4467/2353737XCT.14.283.3371Open DOISearch in Google Scholar

14. Itskosa, G., Koukouzasa, N., Vasilatosb, C., Megremib, I. & Moutsatsouc, A. (2010). Comparative uptake study of toxic elements from aqueous media by the different particlesize fractions of fly ash. J. Hazard. Mater. 183, 787–792. DOI: 10.1016/j.jhazmat.2010.07.095.10.1016/j.jhazmat.2010.07.09520724071Open DOISearch in Google Scholar

15. Yadla, S.V., Sridevi, V. & Chandana Lakshmi, M.V.V. (2012). Adsorption Performance Of Fly Ash For The Removal Of Lead. Int. J. Eng. Res. Technol. 1, 1–7. ISSN: 2278-0181.Search in Google Scholar

16. Bhardwaj, R., Chen, X. & Vidic, R.D. (2009). Impact of fly ash composition on mercury speciation in simulated flue gas. J. Air Waste Manage. Assoc. 59(11), 1331–1338. DOI: 10.3155/1047-3289.59.11.1331.10.3155/1047-3289.59.11.133119947114Open DOISearch in Google Scholar

17. Thiele, A., Török, B. & Költő, L. (2012). Energy dispersive X-ray analysis (SEM-EDS) on slag samples from medievalbloomery workshops – the role of phosphorus in the archaeometallurgy of iron in Somogy County, Hungary, Proceedings of the 39th International Symposium for Archaeometry, Leuven, 1–9.Search in Google Scholar

18. Kong, D.L.Y., Sanjayan, J.G. & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37, 1583–1589. DOI: 10.1016/j.cemconres.2007.08.021.10.1016/j.cemconres.2007.08.021Open DOISearch in Google Scholar

19. Temuujin, J., & Riessen, A.V. (2009). Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164, 634-639. DOI: 10.1016/j.jhazmat.2008.08.065.10.1016/j.jhazmat.2008.08.06518824295Open DOISearch in Google Scholar

20. Thokchom, S., Ghosh, P. and Ghosh, S. (2009). Resistance of Fly Ash Based Geopolymer Mortars in Sulfuric Acid. ARPN J. Eng. Appl. Sci. 4, 65–70. ISSN 1819-6608.Search in Google Scholar

21. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. & Rangan, B.V. (2005). Fly ash-based geopolymer concrete. Aust. J. Struct. Eng. 6, 77–86. DOI: 10.9790/1684-1404071216.10.9790/1684-1404071216Open DOISearch in Google Scholar

22. Mustafa, A.M., Kamarudin, H., Omar Karem, A.K.A., Ruzaidi, C.M., Rafiza, A.R. & Norazian, M.N. (2011). Optimization Of Alkaline Activator/Fly Ash Ratio On The Compressive Strength Of Manufacturing Fly Ash-Based Geopolymer. 2nd International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2011), Singapore.Search in Google Scholar

23. Alinnor, I.J. (2007). Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel. 86, 853–857.Search in Google Scholar

24. Bieniek. J., Ściubidło, A. & Izabela Majchrzak-Kucęba, I. (2013). Properties of fly ash derived from coal combustion in air and in oxygen enriched atmosphere in a pilot plant installation Oxy-Fuel CFB 0,1 MW, Energetyka 11/2013 (713), 821–826. ISSN 0013-7294.Search in Google Scholar

25. Paya, J., Monzo, J., Borrachero, M.V., Perris, E. & Amahjour, F. (1998). Thermogravimetric methods for determinig carbon content in fly ashes, Cem. Concr. Res. 28(5), 675–686. DOI: 10.1016/S0008-8846(98)00030-1.10.1016/S0008-8846(98)00030-1Open DOISearch in Google Scholar

26. Mohebbi, M., Rajabipour, F. & Scheetz, B.E. (2015). Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash. World of Coal Ash (WOCA) Conference in Nasvhill.Search in Google Scholar

27. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption. CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL. DOI: 10.1201/9781420028812.10.1201/9781420028812Open DOISearch in Google Scholar

28. Sing, K.S.W. (1982). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 54, 2201–2218. DOI: 10.1351/pac198254112201.10.1351/pac198254112201Open DOISearch in Google Scholar

29. Liu, J., Qiu, Q., Xing, F. & Pan, D. (2014). Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Mater. 7, 4282–4296. DOI: 10.3390/ma7064282.10.3390/7064282Open DOISearch in Google Scholar

30. Ho, YS. (2005). Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour Technol. 96(11): 1292–1296. DOI: 10.1016/j.biortech.2004.10.011.10.1016/j.biortech.2004.10.01115734317Open DOISearch in Google Scholar

31. Paliulis, D. & Bubėnaitė, J. (2014). Effect of pH for lead removal from polluted water applying peat. The 9th International Conference „Environmental Engineering 2014”. DOI: 10.3846/enviro.2014.042.10.3846/enviro.2014.042Open DOISearch in Google Scholar

32. Weng, C.H. & Huang, C.P. (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surf. A. 247, 137–143. DOI: 10.1016/j.colsurfa.2004.08.050.10.1016/j.colsurfa.2004.08.050Open DOISearch in Google Scholar

33. Adebowale, K.O., Unuabonah, I.E. & Olu-Owolabi, B.I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130–139. DOI: 10.1016/j.jhazmat.2005.10.056.10.1016/j.jhazmat.2005.10.05616343763Open DOISearch in Google Scholar

34. Sari, A., Tuzen, M. & Citak, D. (2007). Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291. DOI: 10.1016/j.jhazmat.2007.03.078.10.1016/j.jhazmat.2007.03.07817478040Open DOISearch in Google Scholar

35. Kalak, T. & Cierpiszewski, R. (2015). Correlation analysis between particulate soil removal and surface properties of laundry detergent solutions. Text. Res. J. 85, 1884–1906. DOI: 10.1177/0040517515578329.10.1177/0040517515578329Open DOISearch in Google Scholar

36. Kavitha, D. & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98, 14–21. DOI: 10.1016/j.biortech.2005.12.008.10.1016/j.biortech.2005.12.008Open DOISearch in Google Scholar

37. Ho, Y.S. & McKay, G. (1999). Psudo-second order model for sorption processes, Process Biochem. 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Open DOISearch in Google Scholar

38. Wong, K.K., Lee, C.K., Low, K.S. & Haron, M.J. (2003). Removal of Cu(II) and Pb(II) by tartaric acid modified rice husk from aqueous solutions. Chemosphere. 50, 23-28. DOI: 10.1016/S0045-6535(02)00598-2.10.1016/S0045-6535(02)00598-2Open DOISearch in Google Scholar

39. Wang, S.B. & Ariyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interf. Sci. 314, 25–31. DOI: 10.1016/j.jcis.2007.05.032.10.1016/j.jcis.2007.05.03217543322Open DOISearch in Google Scholar

40. Kumar, P.S., Vincent, C., Kirthika, K. & Kumar, K.S. (2010). Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng. 27, 339–346. DOI: 10.1590/S0104-66322010000200012.10.1590/S0104-66322010000200012Open DOISearch in Google Scholar

41. Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A. & Silva, L.F. (2013). Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash, Science of the Total Environment. 452–453C, 98–107. DOI: 10.1016/j.scitotenv.2013.02.010.10.1016/j.scitotenv.2013.02.01023500403Open DOISearch in Google Scholar

42. Ueda, S., Koyo, H., Ikeda, T., Kariya, Y. & Maeda, M. (2000). Infrared emission spectra of CaF2-CaO-SiO2 melt. ISIJ Int. 40(8), 739–743. DOI: 10.2355/isijinternational.40.739.10.2355/isijinternational.40.739Search in Google Scholar

43. Iliashevsky, O., Rubinov, E., Yagen, Y. & Gottlieb, M. (2016). Functionalization of Silica Surface with UV-Active Molecules by Multivalent Organosilicon Spacer. Open J. Inorg. Chem. 6, 163–174. DOI: 10.4236/ojic.2016.63012 .10.4236/ojic.2016.63012Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering