Cite

1. Monterroso, R., Fan, M., Argyle, M.D., Varga, K., Dyar, D., Tang, J., Sun, Q., Towler, B., Elliot, K.W. & Kammen, D. (2014). Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Appl. Catal. A Gen. 475, 116–126. DOI: 10.1016/j.apcata.2014.01.007.10.1016/j.apcata.2014.01.007Open DOISearch in Google Scholar

2. International Energy Agency, http://www.iea.orgSearch in Google Scholar

3. Ding, L., Dai, Z., Wei, J., Zhou, Z. & Yu, G. (2017). Catalytic effects of alkali carbonates on coal char gasification. J. Energy Inst. 90(4), 588-601. DOI: 10.1016/j.joei.2016.05.003.10.1016/j.joei.2016.05.003Open DOISearch in Google Scholar

4. Wang, J., Jiang, M., Yao, Y., Zhang, Y. & Cao, J. (2009). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel 88(9), 1572–1579. DOI: 10.1016/j.fuel.2008.12.017.10.1016/j.fuel.2008.12.017Open DOISearch in Google Scholar

5. Chen, S.G. & Yang, R.T. (1997). Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy Fuels 11(2), 421–427. DOI: 10.1021/ef960099o.10.1021/ef960099oOpen DOISearch in Google Scholar

6. Ohtsuka, Y. & Asami, K. (1997). Highly active catalysts from inexpensive raw materials for coal gasification. Catal. Today 39(1–2), 111–125. DOI: 10.1016/S0920-5861(97)00093-X.10.1016/S0920-5861(97)00093-XOpen DOISearch in Google Scholar

7. Karimi, A. & Gray, M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke. Fuel 90(1), 120–125. DOI: 10.1016/j.fuel.2010.07.032.10.1016/j.fuel.2010.07.032Open DOISearch in Google Scholar

8. Kopyscinski, J., Rahman, R., Gupta, R., Mims, C. & Hill, J. (2014). K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B), 1181–1189. DOI: 10.1016/j.fuel.2013.07.030.10.1016/j.fuel.2013.07.030Search in Google Scholar

9. Czerski, G., Zubek, K., Grzywacz, P. & Porada, S. (2017). Effect of char preparation conditions on gasification in a carbon dioxide atmosphere. Energy Fuels 31(1), 815–823. DOI: 10.1021/acs.energyfuels.6b02139.10.1021/acs.energyfuels.6b02139Open DOISearch in Google Scholar

10. Porada, S., Czerski, G., Grzywacz, P., Makowska, D. & Dziok, T. (2017). Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products. Thermochim. Acta 653, 97–105. DOI: 10.1016/j.tca.2017.04.007.10.1016/j.tca.2017.04.007Search in Google Scholar

11. Zubek, K., Czerski, G. & Porada, S. (2018). Determination of optimal temperature and amount of catalysts based on alkali and alkaline earth metals for steam gasification process of bituminous coal. Thermochim. Acta 665, 60–69. DOI: 10.1016/j.tca.2018.05.006.10.1016/j.tca.2018.05.006Open DOISearch in Google Scholar

12. Zubek, K., Czerski, G. & Porada, S. (2017). Comparison of catalysts based on individual alkali and alkaline earth metals with their composites used for steam gasification of coal. Energy Fuels 32(5), 5684–5692. DOI: 10.1021/acs.energyfuels.7b03562.10.1021/acs.energyfuels.7b03562Open DOISearch in Google Scholar

13. Czerski G. (2018). Study on gasification kinetics by thermovolumetric and thermogravimetric methods. Przem. Chem. 97, 214–223. DOI: 10.15199/62.2018.2.6.10.15199/62.2018.2.6Search in Google Scholar

14. Porada, S., Dziok, T., Czerski, G., Grzywacz, P. & Strugała, A. (2017). Examinations of Polish brown and hard coals in terms of their use in the steam gasification process. Mineral Resources Management 33(1), 15–34. DOI: 10.1515/gospo-2017-0007.10.1515/gospo-2017-0007Open DOISearch in Google Scholar

15. De Micco, G., Nasjleti, A. & Bohe, A. E. (2012). Kinetics of the gasification of a Rio Turbio coal under different pyrolysis temperatures. Fuel 95, 537–543. DOI: 10.1016/j.fuel.2011.12.057.10.1016/j.fuel.2011.12.057Open DOISearch in Google Scholar

16. Szekely, J., Evans, J.W. & Sohn, H.Y. (1976). Gas-solid Reactions. New York, USA: Academic Press.Search in Google Scholar

17. Bhatia, S.K. & Perlmutter, D.D. (1980). A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 26(3), 379–386. DOI: 10.1002/aic.690260308.10.1002/aic.690260308Open DOISearch in Google Scholar

18. Zubek, K., Czerski, G. & Porada, S. (2017). The influence of catalytic additives on kinetics of coal gasification process. In E3S Web of Conferences 14 (02012), 1–10. EDP Sciences. Retrieved March 15, 2017, from http://www.e3s-conferences.org. DOI: doi.org/10.1051/e3sconf/20171402012.10.1051/e3sconf/20171402012Open DOISearch in Google Scholar

19. Ding, L., Zhang, Y., Wang, Z., Huang, J. & Fang, Y. (2014). Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char. Bioresour. Technol. 173, 11–20. DOI: 10.1016/j.biortech.2014.09.007.10.1016/j.biortech.2014.09.00725280109Open DOISearch in Google Scholar

20. Yamashita, H., Nomura, M. & Tomita, A. (1992). Local structures of metals dispersed on coal. 4. Local structure of calcium species on coal after heat treatment and carbon dioxide gasification. Energy Fuels 6(5), 656–661. DOI: 10.1021/ef00035a018.10.1021/ef00035a018Open DOISearch in Google Scholar

21. Huang, X., Zhang, F., Fan, M. & Wang, Y. (2015). Catalytic Coal Gasification. Sustainable Catalytic Processes, 179–199. DOI: 10.1016/B978-0-444-59567-6.00007-8.10.1016/B978-0-444-59567-6.00007-8Open DOISearch in Google Scholar

22. Li, B., Wei, L., Yang, H., Wang, X. & Chen, H. (2014). The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production. Energy, 68, 248–254. DOI: 10.1016/j.energy.2014.02.088.10.1016/j.energy.2014.02.088Open DOISearch in Google Scholar

23. Sassmanova, V., Janouchova, R., Frantik, J., Machackova, I. & Juchelkova, D. (2014). Influence of catalysts on water-gas shift reaction and hydrogen recovery. IERI Procedia, 8, 164–169. DOI: 10.1016/j.ieri.2014.09.027.10.1016/j.ieri.2014.09.027Search in Google Scholar

24. Gnanamani, M.K., Jacobs, G., Shafer, W.D., Sparks, D.E., Hopps, S., Thomas, G.A. & Davis, B.H. (2014). Low temperature water–gas shift reaction over alkali metal promoted cobalt carbide catalysts. Topics in Catalysis, 57(6–9), 612–618. DOI: 10.1007/s11244-013-0219-7.10.1007/s11244-013-0219-7Open DOISearch in Google Scholar

25. Watanabe, R., Sakamoto, Y., Yamamuro, K., Tamura, S., Kikuchi, E. & Sekine, Y. (2013). Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction. Appl. Catalysis A: General, 457, 1–11. DOI: 10.1016/j.apcata.2013.03.010.10.1016/j.apcata.2013.03.010Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering