Cite

1. Boschetto, D.L., Lerin, L., Cansian, R., Pergher, S.B.C. & Di Luccio, M. (2012). Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem. Eng. J. 204, 210–216. http://dx.doi.org/10.1016/j.cej.2012.07.11110.1016/j.cej.2012.07.111Open DOISearch in Google Scholar

2. Sánchez, M.J., Mauricio, J.E., Paredes, A.R., Gamero, P. & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Mater. Lett. 191, 65–68. http://dx.doi.org/10.1016/j.matlet.2017.01.03910.1016/j.matlet.2017.01.039Open DOISearch in Google Scholar

3. Gazzotti, S., Todisco, S.A., Picozzi, C., Ortenzi, M.A., Farina, H., Lesma, G. & Silvani, A. (2019). Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. Eur. Polym. J. 114, 369–379. https://doi.org/10.1016/j.eurpolymj.2019.03.00110.1016/j.eurpolymj.2019.03.001Open DOISearch in Google Scholar

4. Turalija, M., Bischof, S., Budimir, A. & Gaan, S. (2016). Antimicrobial PLA films from environment friendly additives. Compos. Part B: Engin. 102, 94–99. https://doi.org/10.1016/j.compositesb.2016.07.01710.1016/j.compositesb.2016.07.017Open DOISearch in Google Scholar

5. Braunwarth, H. & Brill, F.H.H. (2014). Antimicrobial efficacy of modern wound dressings: Oligodynamic bactericidal versus hydrophobic adsorption effect. Wound Medicine. 5, 16–20. http://dx.doi.org/10.1016/j.wndm.2014.04.00310.1016/j.wndm.2014.04.003Open DOISearch in Google Scholar

6. Breck, D.W. (1984). Zeolite molecular sieves: structure, chemistry, and use ed (Universidade de Michigan), pp. 771.Search in Google Scholar

7. McCusker, L.B., Olson, D.H. & Baerlocher, C. (2007). Atlas of Zeolite Framework Types 6ª ed (Elsevier Science). ISBN: 978-0-444-53064-6.Search in Google Scholar

8. Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis. pp. 618. Wiley.10.1002/9783527629565Search in Google Scholar

9. Melo, C.R., Riella, H.G., Kuhnen, N.C., Angioletto, E., Melo, A.R., Bernardin, A.M., da Rocha, M.R. & da Silva, L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater. Sci. Engin., B. 177(4), 345–349. http://dx.doi.org/10.1016/j.mseb.2012.01.01510.1016/j.mseb.2012.01.015Open DOISearch in Google Scholar

10. Rivera-Garza, M., Olguín, M.T., García-Sosa, I., Alcántara, D. & Rodríguez-Fuentes, G. (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mat. 39(3), 431–444. http://dx.doi.org/10.1016/S1387-1811(00)00217-110.1016/S1387-1811(00)00217-1Search in Google Scholar

11. Tekin, R. & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Micropor. Mesopor. Mat. 234, 55–60. http://dx.doi.org/10.1016/j.micromeso.2016.07.00610.1016/j.micromeso.2016.07.006Open DOISearch in Google Scholar

12. Ferreira, L., Fonseca, A.M., Botelho, G., Aguiar, C.A. & Neves, I.C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Micropor. Mesopor. Mat. 160, 126–132. http://dx.doi.org/10.1016/j.micromeso.2012.05.00610.1016/j.micromeso.2012.05.006Open DOISearch in Google Scholar

13. Fang, M., Chen, J.H., Xu, X.L., Yang, P.H. & Hildebrand, H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents. 27(6), 513–517. http://dx.doi.org/10.1016/j.ijantimicag.2006.01.00810.1016/j.ijantimicag.2006.01.008Open DOISearch in Google Scholar

14. Kalinowska, M., Piekut, J., Bruss, A., Follet, C., Sienkiewicz-Gromiuk, J., Świsłocka, R., Rzączyńska, Z. & Lewandowski, W. (2014). Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 122, 631–638. http://dx.doi.org/10.1016/j.saa.2013.11.08910.1016/j.saa.2013.11.089Open DOISearch in Google Scholar

15. Zhang, B., Lin, Y., Tang, X., He, S. & Xie, G. (2010). Synthesis, characterization, and antimicrobial properties of Cu-inorganic antibacterial material containing lanthanum. J. Rare Earths. 28, 451–455. http://dx.doi.org/10.1016/S1002-0721(10)60346-810.1016/S1002-0721(10)60346-8Open DOISearch in Google Scholar

16. Savi, G.D., Cardoso, W.A., Furtado, B.G., Bortolotto, T., Da Agostin, L.O.V., Nones, J., Zanoni, E.T., Montedo, O.R.K. & Angioletto, E. (2017). New ion-exchanged zeolite derivatives: Antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1. Mat. Res. Exp., 4, 085401. http://dx.doi.org/10.1088/2053-1591/aa84a510.1088/2053-1591/aa84a5Search in Google Scholar

17. CLSI (2009). Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Pennsylvania, USA., Wayne.Search in Google Scholar

18. Balouiri, M., Sadiki, M. & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharmaceut. Anal. 6(2), 71–79. http://dx.doi.org/10.1016/j.jpha.2015.11.00510.1016/j.jpha.2015.11.005576244829403965Open DOISearch in Google Scholar

19. Santos, M.F., Oliveira, C.M., Tachinski, C.T., Fernandes, M.P., Pich, C.T., Angioletto, E., Riella, H.G. & Fiori, M.A. (2011). Bactericidal properties of bentonite treated with Ag+ and acid. Int. J. Miner. Process. 100(1), 51–53. http://dx.doi.org/10.1016/j.minpro.2011.04.01210.1016/j.minpro.2011.04.012Open DOISearch in Google Scholar

20. Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J. Pharm. Sci. 23(1), 20. http://dx.doi.org/10.1186/s40199-015-0105-x10.1186/s40199-015-0105-x434478925888940Open DOISearch in Google Scholar

21. Brix, K.V., Gerdes, R.M., Adams, W.J. & Grosell, M. (2006). Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch. Environ. Contam. Toxicol. 51(4), 580–583. http://dx.doi.org/10.1007/s00244-005-0244-z10.1007/s00244-005-0244-z16897274Open DOISearch in Google Scholar

22. Charles, J., Sancey, B., Morin-Crini, N., Badot, P.-M., Degiorgi, F., Trunfio, G. & Crini, G. (2011). Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 74(7), 2057–2064. https://doi.org/10.1016/j.ecoenv.2011.07.02510.1016/j.ecoenv.2011.07.02521835466Open DOISearch in Google Scholar

23. Netto, E., Madeira, R.A., Silveira, F.Z., Fiori, M.A., Angioleto, E., Pich, C.T. & Geremias, R. (2013). Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays. Environ. Toxicol. Pharmacol. 35(3), 511–516. http://dx.doi.org/10.1016/j.etap.2013.02.00710.1016/j.etap.2013.02.00723518284Open DOISearch in Google Scholar

24. Luna, F.J. & Schuchardt, U. (2001). Modificação de zeólitas para uso em catálise. Quim. Nova. 24, 885–892.10.1590/S0100-40422001000600027Search in Google Scholar

25. Demirci, S., Ustaoglu, Z., Yilmazer, G.A., Sahin, F. & Bac, N. (2014). Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 172(3), 1652–1662. http://dx.doi.org/10.1007/s12010-013-0647-710.1007/s12010-013-0647-7Open DOISearch in Google Scholar

26. Tapiero, H. & Tew, K.D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57(9), 399–411.10.1016/S0753-3322(03)00081-7Search in Google Scholar

27. Alswat, A.A., Ahmad, M.B., Hussein, M.Z., Ibrahim, N.A. & Saleh, T.A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 33(8), 889–96. http://dx.doi.org/10.1016/j.jmst.2017.03.01510.1016/j.jmst.2017.03.015Search in Google Scholar

28. Fanta, F.T., Dubale, A.A., Bebizuh, D.F. & Atlabachew, M. (2019). Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC Chemistry. 13(1), 44. http://dx.doi.org/10.1186/s13065-019-0563-110.1186/s13065-019-0563-1666176731384792Open DOISearch in Google Scholar

29. Aguado, S., Quirós, J., Canivet, J., Farrusseng, D., Boltes, K. & Rosal, R. (2014). Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere. 113, 188–192. http://dx.doi.org/10.1016/j.chemosphere.2014.05.02910.1016/j.chemosphere.2014.05.02925065809Open DOISearch in Google Scholar

30. Savi, G.D., Cardoso, W.A., Furtado, B.G., Bortolotto, T., Zanoni, E.T., Scussel, R., Rezende, L.F., Avila, R.A.M., Montedo, O.R.K. & Angioletto, E. (2018). Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites. J. Environ. Sci. Health, Part B, 53(3): 184–190. http://dx.doi.org/10.1080/03601234.2017.1405639.10.1080/03601234.2017.140563929286883Open DOISearch in Google Scholar

31. Tamayo, L., Azócar, M., Kogan, M., Riveros, A. & Páez, M. (2016). Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Engin.: C. 69, 1391–1409. http://dx.doi.org/10.1016/j.msec.2016.08.04110.1016/j.msec.2016.08.04127612841Open DOISearch in Google Scholar

32. Savi, G.D., Bortoluzzi, A.J. & Scussel, V.M. (2013). Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 48(9), 1834–1840. http://dx.doi.org/10.1111/ijfs.1215810.1111/ijfs.12158Open DOISearch in Google Scholar

33. Vitorino, H.A., Mantovanelli, L., Zanotto, F.P. & Esposito, B.P. (2015). Iron metallodrugs: stability, redox activity and toxicity against Artemia salina. PLoS One. 10(4), e0121997. http://dx.doi.org/10.1371/journal.pone.012199710.1371/journal.pone.0121997438834625849743Search in Google Scholar

34. Arulvasu, C., Jennifer, S.M., Prabhu, D. & Chandhirasekar, D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci. World J.2014, 256919. http://dx.doi.org/10.1155/2014/25691910.1155/2014/256919391012224516361Search in Google Scholar

35. Bortolotto, T., Bertoldo, J.B., da Silveira, F.Z., Defaveri, T.M., Silvano, J. & Pich, C.T. (2009). Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays. Environ. Toxicol. Pharmacol. 28(2), 288–293. http://dx.doi.org/10.1016/j.etap.2009.05.00710.1016/j.etap.2009.05.00721784018Open DOISearch in Google Scholar

36. Rodrigues, L.C.d.A., Barbosa, S., Pazin, M., Maselli, B.d.S., Beijo, L.A. & Kummrow, F. (2013). Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Rev. Bras. Eng. Agríc. 17, 1099–1108.10.1590/S1415-43662013001000012Search in Google Scholar

37. Angele-Martinez, C., Nguyen, K.V., Ameer, F.S., Anker, J.N. & Brumaghim, J.L. (2017). Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology. 11(2), 278–288. http://dx.doi.org/10.1080/17435390.2017.129375010.1080/17435390.2017.1293750549415228248593Open DOISearch in Google Scholar

38. Wang, F. & Sayre, L.M. (1989). Oxidation of tertiary amine buffers by copper(II). Inorg. Chem. 28(2), 169–170. http://dx.doi.org/10.1021/ic00301a00110.1021/ic00301a001Open DOISearch in Google Scholar

39. Tachon, P. (1989). Ferric and cupric ions requirement for DNA single-strand breakage by H2O2. Free Radic. Res. Commun. 7(1), 1–10.10.3109/107157689090881552509299Search in Google Scholar

40. Burrows, C.J. & Muller, J.G. (1998). Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 98(3), 1109–1152.10.1021/cr960421s11848927Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering