Cite

1. Serrano, R., Portolés, T., Blanes, M.A., Hernández, F., Navarro, J.C., Varó, I. & Amat, F. (2012). Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry, Sci. Total Environ. 433, 161–168. DOI: 10.1016/j.scitotenv.2012.06.042.10.1016/j.scitotenv.2012.06.042Open DOISearch in Google Scholar

2. Moreno-González, R., Campillo, J.A., García, V. & León, V.M. (2013). Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 92, 247–257. DOI: 10.1016/j.chemosphere.2012.12.022.10.1016/j.chemosphere.2012.12.022Open DOISearch in Google Scholar

3. Orton, F., Lutz, I., Kloas, W. & Routledge, E.J. (2009). Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence, Sci. Total Environ. 43(6), 2144–2150. DOI: 10.1021/es8028928.10.1021/es8028928Open DOISearch in Google Scholar

4. Han, D., Jia, W. & Liang, H. (2010). Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent, J. Environ. Sci. 22(2), 237–241. DOI: 10.1016/S1001-0742(09)60099-1.10.1016/S1001-0742(09)60099-1Open DOISearch in Google Scholar

5. Aksu, Z. & Kabasakal, E. (2004) Batch adsorption of 2,4-Dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol. 35, 223–240. DOI: 10.1016/S1383-5866(03)00144-8.10.1016/S1383-5866(03)00144-8Open DOISearch in Google Scholar

6. Peixoto, F.P., Lopes, M.L., Madeira, V.M.C. & Vicente, J.A.F. (2009). Toxicity of MCPA on non-green potato tuber calli, Acta Physiol. Plant. 31, 103–109. DOI 10.1007/s11738-008-0207-x.10.1007/s11738-008-0207-xOpen DOISearch in Google Scholar

7. Cerbai, B., Solaro, R. & Chiellini, E. (2008). Synthesis and characterization of functionalpolyesters tailored for biomedical applications. J. Polym. Sci. A1. 46, 2459–2476. DOI: 10.1002/pola.22579.10.1002/pola.22579Open DOISearch in Google Scholar

8. Zhang, R. & Moore, J.A. (2003). Synthesis, characterization and properties of polycarbonate containing carboxyl side groups, Macromol. Symp. 199, 375–390. DOI: 10.1002/masy.200350932.10.1002/masy.200350932Search in Google Scholar

9. Gültekin, I. & Ince, N.H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes, J. Environ. Manage 85, 816–832. DOI: 10.1016/j.jenvman.2007.07.020.10.1016/j.jenvman.2007.07.02017768001Open DOISearch in Google Scholar

10. Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G. & Marino, A. (2004). Analytical methodologies for determining the occurence of endocrine disrupting chemicals in sewage treatment plants and natural waters, Anal. Chim. Acta 501, 79–88. DOI: 10.1016/j.aca.2003.09.020.10.1016/j.aca.2003.09.020Search in Google Scholar

11. Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G. & Rocher, V. (2016). Removal of emerging micropollutants from waste-water by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater, J. Environ. Chem. Eng. 4, 1102–1109. DOI: 10.1016/j.jece.2016.01.018.10.1016/j.jece.2016.01.018Open DOISearch in Google Scholar

12. Ocampo-Pérez, R., Abdel daiem, M.M., Rivera-Utrilla, J., Méndez-Díaz, J.D. & Sánchez-Polo M. (2012). Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon, J. Colloid Interf. Sci. 385, 174–182. DOI: 10.1016/j.jcis.2012.07.004.10.1016/j.jcis.2012.07.004Open DOISearch in Google Scholar

13. Abdel daiem, M.M., Rivera-Utrilla, J., Ocampo-Pérez, R., Sánchez-Polo, M. & López-Peñalver, J.J. (2013). Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds, Chem. Eng. J. 219, 371–379. DOI: 10.1016/j.cej.2012.12.069.10.1016/j.cej.2012.12.069Open DOISearch in Google Scholar

14. Rivera-Utrilla, J., Sánchez-Polo, M., Abdel daiem, M.M. & Ocampo-Pérez, R. (2012). Role of activated carbon in the photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by the UV/TiO2/activated carbon system, Appl. Catalysis–B: Environ. 126, 100–107. DOI: 10.1016/j.apcatb.2012.07.015.10.1016/j.apcatb.2012.07.015Open DOISearch in Google Scholar

15. Tchaikovskaya, O.N., Karetnikova, E.A., Sokolova, I.V., Mayer, G.V. & Shvornev, D.A. (2012). The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water. J. Photoch. Photobio. A 228, 8–14. DOI: 10.1016/j.jphotochem.2011.11.004.10.1016/j.jphotochem.2011.11.004Open DOISearch in Google Scholar

16. Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P.M., Alvim-Ferraz, M.C.M. & Dias, J.M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 187, 1–23. DOI: 10.1016/j.jhazmat.2011.01.033.10.1016/j.jhazmat.2011.01.033Open DOISearch in Google Scholar

17. Daifullah, A.A.M., Yakout, S.M. & Elreefy, S.A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater. 147, 633–643. DOI: 10.1016/j.jhazmat.2007.01.062.10.1016/j.jhazmat.2007.01.062Open DOISearch in Google Scholar

18. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manage. 85 (2007) 833–84610.1016/j.jenvman.2007.07.031Search in Google Scholar

19. Hameed, B.H., Salman, J.M. & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater. 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.10.1016/j.jhazmat.2008.06.069Open DOISearch in Google Scholar

20. Said, N., El-Shatoury, S.A., Díaz, L.F. & Zamorano, M. (2013). Quantitative appraisal of biomass resources and their energy potential in Egypt, Renew. Sust. Energ. Rev. 24, 84–91. DOI: 10.1016/j.rser.2013.03.014.10.1016/j.rser.2013.03.014Open DOISearch in Google Scholar

21. Ahmedna, M., Marshall, W.E. & Rao, R.M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol. 71, 113–123. DOI: 10.1016/S0960-8524(99)00070-X.10.1016/S0960-8524(99)00070-XOpen DOISearch in Google Scholar

22. Said, N., Bishara, T., García-Maraver, A. & Zamorano, M. (2013). Effect of water washing on the thermal behavior of rice straw, Waste Manage. 33, 2250–256. DOI: 10.1016/j.wasman.2013.07.019.10.1016/j.wasman.2013.07.019Open DOISearch in Google Scholar

23. Bautista-Toledo, M.I, Méndez-Díaz, J.D., Sánchez-Polo, M., Rivera-Utrilla, J. & Ferro-García, M.A. (2008). Adsorption of sodium dodecylbenzenesulfonate on activated carbons: Effects of solution chemistry and presence of bacteria, J. Colloid Interf. Sci. 317, 11–17. DOI: 10.1016/j.jcis.2007.09.039.10.1016/j.jcis.2007.09.039Open DOISearch in Google Scholar

24. Rivera-Utrilla, J. & Sánchez-Polo, M. (2004). Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons, Langmuir 20, 9217–9222. DOI: 10.1021/la048723+.10.1021/la048723+Open DOISearch in Google Scholar

25. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M.A. & Moreno-Castilla, C. (2003). Bioadsorption of Pb (II), Cd (II), and Cr (VI) on activated carbon from aqueous solutions, Carbon 41, 323–330. DOI: 10.1016/S0008-6223(02)00293-2.10.1016/S0008-6223(02)00293-2Open DOISearch in Google Scholar

26. Leyva-Ramos, R. & Geankoplis, C.J. (1985). Model simulation and analysis of surface diffusion of liquid in porous solids, Chem. Eng. Sci. 40(5), 799–807. DOI: 10.1016/0009-2509(85)85032-6.10.1016/0009-2509(85)85032-6Open DOISearch in Google Scholar

27. Leyva-Ramos, R. & Geankoplis, C.J. (1994). Diffusion in liquid filled pores of activated carbon, I: pore volumen diffusion, Can. J. Chem. Eng. 72(2), 262–271. DOI: 10.1002/cjce.5450720213.10.1002/cjce.5450720213Open DOISearch in Google Scholar

28. Choong, T.S.Y., Wong, T.N., Chuah, T.G. & Idris, A. (2006). Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interf. Sci. 301(2), 436–440. DOI: 10.1016/j.jcis.2006.05.033.10.1016/j.jcis.2006.05.03316814316Open DOISearch in Google Scholar

29. Schiesser, W.E. & Silebi, C.A. (1997). Computational Transport Phenomena. Numerical Methods for the solution of Transport Problems 1995–1997: Cambridge University Press: Cambridge, U.K.10.1017/9780511804144Search in Google Scholar

30. Méndez-Díaz, J.D., Abdel daiem, M.M., Rivera-Utrilla, J., Sánchez-Polo, M. & Bautista-Toledo, I. (2012). Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons, J. Colloid Interf. Sci. 369, 358–365. DOI: 10.1016/j.jcis.2011.11.073.10.1016/j.jcis.2011.11.07322197057Open DOISearch in Google Scholar

31. Rivera-Utrilla, J., Prados-Joya, G., Sánchez-Polo, M., Ferro-García, M.A. & Bautista-Toledo, I. (2009). Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater. 170, 298–305. DOI: 10.1016/j.jhazmat.2009.04.096.10.1016/j.jhazmat.2009.04.09619464791Open DOISearch in Google Scholar

32. De Lange, M.F., Vlugt, T.J.H., Gascon, J. & Kapteijn, F. (2014). Adsorptive characterization of porous solids: Error analysis guides the way, Micropor Mesopor Mat. 200, 199–215, DOI: 10.1016/j.micromeso.2014.08.048.10.1016/j.micromeso.2014.08.048Open DOISearch in Google Scholar

33. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D. & Fernández-Pereira, C. (2008). Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42–50. DOI: 10.1016/j.cej.2008.01.007.10.1016/j.cej.2008.01.007Open DOISearch in Google Scholar

34. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F. & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111, 185–190. DOI: 10.1016/j.biortech.2012.02.010.10.1016/j.biortech.2012.02.010Open DOISearch in Google Scholar

35. Giles, C.H., Smith, D. & Huitson, A. (1974). A General treatment and classification of the solute adsorption isotherm I. Theoretical, J. Colloid Interf. Sci. 47, 755–765. DOI: 10.1016/0021-9797(74)90252-5.10.1016/0021-9797(74)90252-5Open DOISearch in Google Scholar

36. Giles, C.H., D’Silva, A.P. & Easton, I.A. (1974). A general treatment and classification of the solute adsorption isotherm Part II. Experimental Interpretation, J. Colloid Interf. Sci. 47, 766–778. DOI: 0.1016/0021-9797(74)90253-7.10.1016/0021-9797(74)90253-7Search in Google Scholar

37. Noll, K.E., Gounaris, V. & Hou, W.S. (1992). Adsorption Technology for Air and Water Pollution Control (1st ed.). Michigan, USA: Lewis PublishersSearch in Google Scholar

38. Poling, B.E., Prausnitz, J.M. & O’Connell, J.P. (2001). The Properties of Gases and Liquids (5th ed.) New York, USA: McGraw-Hill Companies.Search in Google Scholar

39. Furusawa, Y. & Smith, J.M. (1973). Fluid-Particle and Intraparticle Mass Transport Rates in Slurries. Ind. Eng. Chem. Fundamen. 12 (2), 197–203. DOI: 10.1021/i160046a009.10.1021/i160046a009Open DOISearch in Google Scholar

40. Ruthven, D.M. (1984). Principles of adsorption and adsorption processes; New Brunswick University: Fredericton, Canada.Search in Google Scholar

41. Do, D.D. (1998). Adsorption analysis: Eguilibria and kinetics; Queensland University Press: Queensland, Australia.Search in Google Scholar

42. Suzuki, M. (1990). Adsorption Engineering; Tokyo University Press: Tokyo, Japan.Search in Google Scholar

43. Leyva-Ramos, R., Rivera-Utrilla, J., Medellín-Castillo, N.A. & Sánchez-Polo, M. (2009). Kinetic modelling of naphthalenesulphonic acid adsorption from aqueous solution onto untreated and ozonated activated carbons, Adsorpt. Sci. Technol. 27 (4), 395–411. DOI: 10.1260/026361709790252650.10.1260/026361709790252650Open DOISearch in Google Scholar

44. López-Ramón, V., Moreno-Castilla, C., Rivera-Utrilla, J. & Radovic, L.R. (2003). Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons, Carbon 41, 2020–2022. DOI: 0.1016/S0008-6223(03)00184-2.10.1016/S0008-6223(03)00184-2Search in Google Scholar

45. Barton, S.S., Evans, M.J.B. & MacDonald, J.A.F. (1994). Adsorption of water vapor on nonporous carbon. Langmuir 10, 4250–4252. DOI: 10.1021/la00023a055.10.1021/la00023a055Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering