Open Access

Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies


Cite

1. Al Zoubi, W. & Al Mohanna, N. (2014). Membrane sensors based on Schiff bases as chelating ionophores–A review. Spectrochim. Acta, Part A, 132, 854–870. doi.org/10.1016/j.saa.2014.04.176.10.1016/j.saa.2014.04.17624947440Open DOISearch in Google Scholar

2. Al Zoubi, W., Al-Hamdani, A.A.S. & Kaseem, M. (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organomet. Chem., 30, 810–817. doi.org/10.1002/aoc.3506.10.1002/aoc.3506Open DOISearch in Google Scholar

3. Al Zoubi, W. & Ko, Y.G. (2017). Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl. Organom. Chem., 31, e3574.10.1002/aoc.3574Search in Google Scholar

4. Al-Hamdani, A.A.S., Balkhi, A.M., Falah, A. & Shaker, S.A. (2016). Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi, Chem. Soc., 20, 487–501.10.1016/j.jscs.2012.08.001Search in Google Scholar

5. Duffy, K.J., Darcy, M.G., Delorme, E., Dillon, S.B., Eppley, D.F., Erickson-Miller, C., Giampa, L., Hopson, C.B., Huang, Y., Keenan, R.M., Lamb, P., Leong, L., Liu, N., Miller, S.G., Price, A.T., Rosen, J., Shah, R., Shaw, T.N., Smith, H., Stark, K.C., Tian, S.-S., Tyree, C., Wig-gall, K.J., Zhang, L. & Luengo, J.I. (2001). Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J. Med. Chem., 44(22), 3730–3745.10.1021/jm010283l11606138Search in Google Scholar

6. Shweta, Neeraj, Asthana, S.K., Mishra, R.K. & Upadhyay, K.K. (2016). Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3. RSC Adv., 6, 55430–55437.10.1039/C6RA01385FSearch in Google Scholar

7. Bose, D., Banerjee, J., Rahaman, S.K.H., Mostafa, G., Fun, H.K., Bailey, W.R.D., Zaworotko, M.J. & Ghosh, B.K. (2004). Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers: supramolecular synthons based on π–π and/or C–H..π interactions. Polyhedron, 23, 2045–2053.10.1016/j.poly.2004.04.035Search in Google Scholar

8. El-Boraey, H.A. (2005). Structural and thermal studies of some aroylhydrazone Schiff’s bases-transition metal complexes. J. Therm. Anal. Calorim., 81(2), 339–346.10.1007/s10973-005-0789-0Search in Google Scholar

9. Al-Shirif, A.S.M. & Abdel-Fattah, H.M. (2003). Thermogravimetric and spectroscopic characterization of trivalent lanthanide chelates with some Schiff bases. J. Therm. Anal. Calorim., 71, 643–649.10.1023/A:1022880615841Search in Google Scholar

10. Grivani, G., Bruno, G., Amiri Rudbari, H. & Khalaji, A.D. (2012). Synthesis, characterization and crystal structure determination of a new oxovanadium (IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene. Inorg. Chem. Commun., 18, 15–20.10.1016/j.inoche.2011.12.044Search in Google Scholar

11. Khalaji, A.D., Fejfarova, K. & Dusek, M. (2010). Synthesis and Characterization of Two Diimine Schiff Bases Derived from 2,4-Dimethoxybenzaldehyde: The Crystal Structure of N,N’-Bis(2,4 dimethoxybenzylidene)-1,2-diaminoethane. Acta Chim. Slov., 57, 257–261.Search in Google Scholar

12. Khalaji, A.D., NajafiChermahini, A., Fejfarova, K. & Dusek, M. (2010). Synthesis, characterization, crystal structure, and theoretical studies on Schiff-base compound 6-[(5-Bromopyridin-2-yl) iminomethyl] phenol. Struct. Chem., 21(1), 153–157.10.1007/s11224-009-9554-5Search in Google Scholar

13. Khandar, A.A. & Rezvani, Z. (1999). Preparation and thermal properties of the bis [5-((4-heptyloxyphenyl) azo)-N-(4-alkoxyphenyl)-salicylaldiminato] copper (II) complex homologues. Polyhedron, 18, 129.10.1016/S0277-5387(98)00275-7Search in Google Scholar

14. El-Deen, I.M., Belal, A.A.M., Farid, N.Y., Zakaria, R. & Refat, M.S. (2015). Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand. Spectrochimica Acta Part A, 149, 771–787.10.1016/j.saa.2015.05.005Search in Google Scholar

15. Bauer, A.W., Kirby, W.M.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 36, 493–496.10.1093/ajcp/45.4_ts.493Search in Google Scholar

16. Geary, W. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J. Coord. Chem. Rev., 7, 81–122.10.1016/S0010-8545(00)80009-0Search in Google Scholar

17. Kavitha, P. & Reddy, K.L. (2016). Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arabian J. Chem., 9, 596–605.10.1016/j.arabjc.2012.09.001Search in Google Scholar

18. Bellamy, L.J. (1980). The Infrared Spectra of Complex Molecules, Chapman and Hall, London.10.1007/978-94-011-6520-4Search in Google Scholar

19. Hanai, K. & Maki, Y. (1993). Vibrational spectra of β-lactams—III. potassium 2-azetidinone-1-sulfonate and its isotopic compounds. Spectrochim Acta A, 49, 1131–1137.10.1016/0584-8539(93)80072-ISearch in Google Scholar

20. Wojciechowski, K. & Jerzy, S. (2000). Effect of the sulphonic group position on the properties of monoazo dyes. Dyes and Pigments, 44, 137–147.10.1016/S0143-7208(99)00085-6Search in Google Scholar

21. Socrates, G. (1980). Infrared Characteristic Group Frequencies. John Wiley and Sons, New York.Search in Google Scholar

22. Snehalatha, M., Ravikumar, C., Sekar, N., Jayakumar, V.S., & Joe, I.H. (2008). F.T-Raman, IR and UV-visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J. Raman Spectrosc., 39, 928–936.10.1002/jrs.1938Search in Google Scholar

23. Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies. John Wiley and Sons, Chichester.Search in Google Scholar

24. Lever, A.B.P. (1997). Inorganic Electronic Spectroscopy. 2nd ed., Elsevier, Amsterdam.Search in Google Scholar

25. Wang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Synthesis, characterization and spectra studies on Zn (II) and Cu (II) complexes with thiocarbamide ligand containing Schiff base group. Struct. Chem., 20, 995–1003.10.1007/s11224-009-9502-4Search in Google Scholar

26. Raman, N., Ravichandran, S. & Thangarajan, C. (2004). Copper (II), cobalt (II), nickel (II) and zinc (II) complexes of Schiff base derived from benzil-2, 4-dinitrophenylhydrazone with aniline. J. Chem. Sci., 116, 215–219.10.1007/BF02708270Search in Google Scholar

27. Lever, A.B.P. (1968). Electronic spectra of some transition metal complexes: Derivation of Dq and B. J. Chem. Edu., 45, 711.10.1021/ed045p711Search in Google Scholar

28. Ramam, N., Kulandaisami, A. & Shunmugasundaram, A. (2001). Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2, 3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide. Trans. Met. Chem., 26, 131135.Search in Google Scholar

29. Sankhala, D.S., Mathur, R.C. & Mishra, S.N. (1980). Synthesis, magnetic and spectral studies on some adducts of manganese (II) acetylacetonate. Indian J. Chem., 19A, 75–82.Search in Google Scholar

30. Hathaway, B.J. & Billing, D.E. (1970). The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord. Chem. Rev., 5, 143–207.10.1016/S0010-8545(00)80135-6Search in Google Scholar

31. Hathaway, B.J. (1984). A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion. Struct. Bonding (Berlin), 57, 55.10.1007/BFb0111454Search in Google Scholar

32. Coats, A.W. & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68–69.10.1038/201068a0Search in Google Scholar

33. Horowitz, H.W. & Metzger, G.A. (1963). A new analysis of thermogravimetric traces. Anal. Chem., 35, 1464–1468.10.1021/ac60203a013Search in Google Scholar

34. Chourasia, P., Suryesh, K.K. & Mishra, A.P. (1993). Synthesis and structural investigation of some mixed-ligand selenito complexes of cobalt (II). Proc. Ind. Acad. Sci., 105, 173–181.10.1007/BF02877480Search in Google Scholar

35. Frost, A.A. & Pearson, R.G. (1961). Kinetics and Mechanism, New York; Wiley.10.1021/j100820a601Search in Google Scholar

36. Raman, N., Raja, S.J. & Sakthivel, A. (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem., 62, 691–709.10.1080/00958970802326179Search in Google Scholar

37. Kulkarni, A.D., Bagihalli, G.B., Patil, S.A. & Badami, P.S. (2009). Synthesis, characterization, electrochemical and in-vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with Schiff bases of formyl coumarin derivatives. J. Coord. Chem., 62, 3060–3072.10.1080/00958970902914569Search in Google Scholar

38. Li, F., Feterl, M., Mulayana, Y., Warner, J.M., Collins, J.G. & Keene, F.R. (2012). In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother., 67, 2686–2695.10.1093/jac/dks29122865383Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering