Cite

1. Romero, E., Quirantes, M. & Nogales, R. (2017). Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel. 208, 1–9. DOI: doi.org/10.1016/j.fuel.2017.06.133.10.1016/j.fuel.2017.06.133Open DOISearch in Google Scholar

2. Niu, Y., Tan, H., Wang, X., Liu, Z., Liu, H., Liu, Y. & Xu, T. (2010). Study on fusion characteristics of biomass ash. Bioresource Technol. 101 (23), 9373–9381. DOI: doi.org/10.1016/j.biortech.2010.06.144.10.1016/j.biortech.2010.06.14420655203Open DOISearch in Google Scholar

3. Fang, X., Jia, L., Wang, F. & Yu, G. (2012). Experimental study on ash fusion characteristics of biomass. Bio-resource Technol. 104(1), 769–774. DOI: doi.org/10.1016/j.biortech.2011.11.055.10.1016/j.biortech.2011.11.05522154746Open DOISearch in Google Scholar

4. Xiao, R., Xueli, C., Fuchen, W. & Guangsuo, Y. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energ. 36(1), 244–249. DOI: doi.org/10.1016/j.renene.2010.06.027.10.1016/j.renene.2010.06.027Open DOISearch in Google Scholar

5. Malaťák, J. & Vaculík, P. (2008). Biomasa pro výrobu energie. Praha, Česká zemědělská univerzita v Praze. ISBN 978-80-213-1810-6.Search in Google Scholar

6. Holubcik, M. & Jandacka, J. (2014). Mathematical model for prediction of biomass ash melting temperature using additives. Komunikacie. 16 (3A), 48–53. ISSN:1335-4205.10.26552/com.C.2014.3A.48-53Search in Google Scholar

7. Garcia-Maraver, A., Mata-Sanchez, J., Carpio, M. & Perez-Jimenez, J.A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. J. Energy Inst. 90, 214–228. DOI: doi.org/10.1016/j.joei.2016.02.002.10.1016/j.joei.2016.02.002Open DOISearch in Google Scholar

8. Vamvuka, D. & Kakaras, E. (2011). Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process Technol. 92, 570–581. DOI: doi.org/10.1016/j.fuproc.2010.11.013.10.1016/j.fuproc.2010.11.013Search in Google Scholar

9. Pronobis, M., Kalisz, S. & Polok, M. (2013). The impact of coal characteristics on the fouling of stoker-fired boiler convection surfaces. Fuel. 112, 473–482. DOI: doi.org/10.1016/j.fuel.2013.05.044.10.1016/j.fuel.2013.05.044Open DOISearch in Google Scholar

10. Yao, X., Xu, K., Yan, F. & Yu, L. (2017). The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. Bioresources. 12(1), 1593–1610.10.15376/biores.12.1.1593-1610Search in Google Scholar

11. Du, S., Yang, H., Qian, K., Wang, X. & Chen, H. (2014). Fusion and transformation properties of the inorganic components in biomass ashes. Fuel. 117, 1281–1287. DOI: doi.org/10.1016/j.fuel.2013.07.085.10.1016/j.fuel.2013.07.085Open DOISearch in Google Scholar

12. Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A-.M., Rocha, T.L.A.C., Brehm, F.A. & Modolo, R.C.E. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel. 165, 351–359. DOI: doi.org/10.1016/j.fuel.2015.10.086.10.1016/j.fuel.2015.10.086Open DOISearch in Google Scholar

13. Li, W., Li, Q., Zhang, Y. & Meng, A. (2012). Ashing temperaturés impact on the characteristics of biomass ash. Appl. Mech. Mater. 260–261, 217–223. DOI: doi.org/10.4028/www.scientific.net/AMM.260-261.217.10.4028/www.scientific.net/AMM.260-261.217Open DOISearch in Google Scholar

14. Yao, X., Xu, K. & Li, Y. (2017). Experimental investigation of performance properties and agglomeration behavior of fly ash from gasification of corncobs. J. Cent. South. Univ. 24, 496–505. DOI: doi.org/10.1007/s11771-017-3452-6.10.1007/s11771-017-3452-6Open DOISearch in Google Scholar

15. Yao, X., Xu, K. & Yan, F. (2016). Comparative study of characterization and utilization of corncob ashes from gasification process and combustion process. Constr. Build. Mater. 119, 215–222. DOI: doi.org/10.1016/j.conbuildmat.2016.04.077.10.1016/j.conbuildmat.2016.04.077Open DOISearch in Google Scholar

16. Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L.I., Jones, J.M. & Nimmo, W. (2015). Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel. 141, 275–284. DOI: doi.org/10.1016/j.fuel.2014.10.021.10.1016/j.fuel.2014.10.021Open DOISearch in Google Scholar

17. Suárez-García, F., Martínez-Alonso, A., Llorente, F.M. & Tascón, J.M.D. (2002). Inorganic matter characterization in vegetable biomass feedstocks. Fuel. 81, 1161–1169. DOI: doi.org/10.1016/S0016-2361(02)00026-1.10.1016/S0016-2361(02)00026-1Open DOISearch in Google Scholar

18. International Organization for Standardization. (2016). Solid biofuels – Determination of ash content. ISO 18122:2015.Search in Google Scholar

19. International Organization for Standardization. (2010). Solid mineral fuels – Determination of ash. ISO 1171:2010.Search in Google Scholar

20. Česká technická norma (2013). Method of testing cement – Part 2: Chemical analysis of cement. ČSN EN 196-2:2013.Search in Google Scholar

21. žProg. Energy Combust. Sci. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. 52, 1–61. DOI: doi.org/10.1016/j.pecs.2015.09.003.10.1016/j.pecs.2015.09.003Open DOISearch in Google Scholar

22. International Organization for Standardization. (2008). Hard coal and coke – Determination of ash fusibility. ISO 540:2008.Search in Google Scholar

23. European Committee for Standardization. (2007). Solid biofuels – Method for the determination of ash melting behavior – Part 1: Characteristic temperatures method. CEN/TS 15370-1.Search in Google Scholar

24. Vassilev, S.V., Vassileva, C.G., Song, Y.C., Li, W.Y. & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel. 208, 377–409. DOI: doi.org/10.1016/j.fuel.2017.07.036.10.1016/j.fuel.2017.07.036Open DOISearch in Google Scholar

25. Liu, B., He, Q., Jiang, Z., Xu, R. & Hu, B. (2013). Relationship between coal ash composition and ash fusion temperatures. Fuel. 105, 293–300. DOI: doi.org/10.1016/j.fuel.2012.06.046.10.1016/j.fuel.2012.06.046Open DOISearch in Google Scholar

26. Magdziarz, A., Dalai, A.K. & Kozinski, J.A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 176, 135–145. DOI: doi.org/10.1016/j.fuel.2016.02.069.10.1016/j.fuel.2016.02.069Open DOISearch in Google Scholar

27. Reinmoller, M., Schreiner, M., Guhl, S., Neuroth, M. & Meyer, B. (2017). Formation and transformation of mineral phases in various fuels studied by different ashing methods. Fuel. 202, 641–649.10.1016/j.fuel.2017.04.115Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering