Open Access

Activated carbons from common nettle as potential adsorbents for CO2 capture


Cite

1. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Open DOISearch in Google Scholar

2. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22, 635–646. DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6Open DOISearch in Google Scholar

3. Michalkiewicz, B. (2006). Esterification of methane as the first stage in converting the natural gas to methanoll. Przem. Chem. 85, 620–623.Search in Google Scholar

4. Michalkiewicz, B. & Kałucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81, 165–170.Search in Google Scholar

5. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Jańczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal., A. 329, 137–147. DOI: 10.1016/j.apcata.2007.07.006.10.1016/j.apcata.2007.07.006Open DOISearch in Google Scholar

6. Michalkiewicz, B. & Opaczewska, L. (2003). Novel condensed-phase catalysts for oxidation of methane. Przem. Chem. 82, 629–630.Search in Google Scholar

7. Enger, B.C., Lødeng, R. & Holmen, A. (2008). A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal., A. 346, 1–27. DOI: 10.1016/j.apcata.2008.05.018.10.1016/j.apcata.2008.05.018Open DOISearch in Google Scholar

8. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. – Chem. Zvesti. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Search in Google Scholar

9. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. – Chem. Zvesti. 59, 403–408. DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Open DOISearch in Google Scholar

10. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal., A. 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Search in Google Scholar

11. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. – Chem. Zvesti. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.10.2478/s11696-008-0100-5Open DOISearch in Google Scholar

12. Michalkiewicz, B., Ziebro, J. & Sreńscek-Nazzal, J. (2006). Direct oxidation of methane to formaldehyde. Przem. Chem. 85, 624–626.Search in Google Scholar

13. Kałucki, K., Michalkiewicz, B., Morawski A.W., Arabczyk, W. & Ziebro, J. (1995). Oxidation of methane to formaldehyde. Przem. Chem. 74, 135–136.Search in Google Scholar

14. Galadim, A. & Muraza, O. (2016). Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 37, 1–13, DOI: 10.1016/j.jiec.2016.03.027.10.1016/j.jiec.2016.03.027Open DOISearch in Google Scholar

15. Corredor, E.C., Chitta, P. & Deo, M.D. (2019). Techno-economic evaluation of a process for direct conversion of methane to aromatics. Fuel Process. Technol. 183, 55–61, DOI: 10.1016/j.fuproc.2018.05.038.10.1016/j.fuproc.2018.05.038Open DOISearch in Google Scholar

16. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal., A. 394, 266–268. DOI: 10.1016/j.apcata.2011.01.014.10.1016/j.apcata.2011.01.014Open DOISearch in Google Scholar

17. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal., A. 307, 270–274. DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006Open DOISearch in Google Scholar

18. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure. Catal. Commun. 8, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.10.1016/j.catcom.2007.03.014Search in Google Scholar

19. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046Open DOISearch in Google Scholar

20. Michalkiewicz, B. (2006). Methane esterification in oleum. Chem. Pap. - Chem. Zvesti. 60, 371–374. DOI: 10.2478/s11696-006-0067-z.10.2478/s11696-006-0067-zOpen DOISearch in Google Scholar

21. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-zOpen DOISearch in Google Scholar

22. Jarosińska, M., Lubkowski, K., Sośnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH4 Esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8Open DOISearch in Google Scholar

23. Michalkiewicz, B. & Ziebro, J. (2004). Non-classical prospective methods of obtaining methanol and formaldehyde. Chem. Process. Eng-Inz. 25, 1973–1980.Search in Google Scholar

24. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XOpen DOISearch in Google Scholar

25. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membr. Sci. 286, 223–227. DOI: 10.1016/j.memsci.2006.09.039.10.1016/j.memsci.2006.09.039Open DOISearch in Google Scholar

26. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.10.1023/B:KICA.0000009057.79026.0bOpen DOISearch in Google Scholar

27. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10, 20–26. DOI: 10.2478/v10026-008-0023-5.10.2478/v10026-008-0023-5Open DOISearch in Google Scholar

28. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82, 627–628.Search in Google Scholar

29. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energy 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.10.1016/j.ijhydene.2013.10.149Open DOISearch in Google Scholar

30. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol., A. 129, 153–157. DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153Search in Google Scholar

31. Majewska, J. & Michalkiewicz, B.(2013) Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A: Mater. Sci. Process. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-zSearch in Google Scholar

32. Ziebro, J., Skorupińska, B., Kądziołka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543Open DOISearch in Google Scholar

33. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ZSM-5 catalyst. Int. J. Hydrogen Energy 41, 8668–8678. DOI: 10.1016/j.ijhydene.2016.01.097.10.1016/j.ijhydene.2016.01.097Open DOISearch in Google Scholar

34. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/145308Open DOISearch in Google Scholar

35. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3Open DOISearch in Google Scholar

36. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039Open DOISearch in Google Scholar

37. Lunsford, J.H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today. 63, 165–174. DOI: 10.1016/S0920-5861(00)00456-9.10.1016/S0920-5861(00)00456-9Open DOISearch in Google Scholar

38. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A. W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004Open DOISearch in Google Scholar

39. Wałęsa-Chorab, M., Patroniak, V., Kubicki, M., Kądzioł-ka, G., Przepiórski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1–8. DOI: 10.1016/j.jcat.2012.03.025.10.1016/j.jcat.2012.03.025Open DOISearch in Google Scholar

40. Marcinkowski, D., Wałęsa-Chorab, M., Patroniak, V., Kubicki, M., Kądziołka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New J. Chem. 38, 604–610. DOI: 10.1039/c3nj01187a.10.1039/c3nj01187aOpen DOISearch in Google Scholar

41. Marcinkowski, D., Wałęsa-Chorab, M., Kubicki, M., Hoffmann, M., Kądziołka, G., Michalkiewicz, B. & Patroniak, V. (2015). A new 2,6-di(anthracen-9-yl)pyridine ligand and its complexes with Ag(I) ions: Synthesis, structure and photocatalytic activity. Polyhedron 90, 91–98. DOI: 10.1016/j.poly.2014.12.049.10.1016/j.poly.2014.12.049Open DOISearch in Google Scholar

42. Gray, M.L., Hoffman, J.S., Hreha, D.C., Fauth, D.J., Hedges, S.W., Champagne, K.J. & Pennline, H.W. (2009). Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuels 23, 4840–4844. DOI:10.1021/ef9001204.10.1021/ef9001204Open DOISearch in Google Scholar

43. Sayari, A., Belmabkhout, Y. & Serna-Guerrero, R. (2011). Flue gastreatment via CO2 adsorption. Chem. Eng. J. 171, 760−774. DOI: 10.1016/j.cej.2011.02.007.10.1016/j.cej.2011.02.007Open DOISearch in Google Scholar

44. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A. 129, 402–404. DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402Search in Google Scholar

45. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394Search in Google Scholar

46. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A. W. & Wróbel, R. J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005Open DOISearch in Google Scholar

47. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129, 158–161. DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158Search in Google Scholar

48. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294Open DOISearch in Google Scholar

49. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79. DOI: 10.1016/j.jcou.2017.01.006.10.1016/j.jcou.2017.01.006Open DOISearch in Google Scholar

50. Lendzion-Bieluń, Z., Czekajło, Ł., Sibera, D., Moszyński, D., Sreńscek-Nazzal, J., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36, 478–492. DOI: 10.1177/0263617417704527.10.1177/0263617417704527Open DOISearch in Google Scholar

51. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wróbel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater., 1–11. DOI: 10.1155/2017/7359591.10.1155/2017/7359591Open DOISearch in Google Scholar

52. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ASC Sustain. Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603hOpen DOISearch in Google Scholar

53. Choma, J., Osuchowski, Ł., Marszewski, M., Dziura, A. & Jaroniec, M. (2016). Developing microporosity in Kevlar1-derived carbon fibers by CO2 activation for CO2 adsorption. J.CO2 Util. 16, 17–22. DOI: 10.1016/j.jcou.2016.05.004.10.1016/j.jcou.2016.05.004Open DOISearch in Google Scholar

54. Marszewska, J. & Jaroniec, M. (2017). Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. J. Colloid Interface Sci. 487, 162–174. DOI: 10.1016/j.jcis.2016.10.033.10.1016/j.jcis.2016.10.03327769000Open DOISearch in Google Scholar

55. Harlick, P.J.E. & Tezel, F.H. (2004). An experimental adsorbent screening study for CO2 removal from N2. Micropor. Mesopor. Mat. 76, 71–79. DOI: 10.1016/j.micromeso.2004.07.035.10.1016/j.micromeso.2004.07.035Open DOISearch in Google Scholar

56. Walton, K.S., Abney, M.B. & LeVan, D.M. (2006). CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor. Mesopor. Mat. 91, 78–84. DOI: 10.1016/j.micromeso.2005.11.023.10.1016/j.micromeso.2005.11.023Open DOISearch in Google Scholar

57. Millward, A.R. & Yaghi, O.M. (2005). Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999. DOI: 10.1021/ja0570032.10.1021/ja057003216366539Open DOISearch in Google Scholar

58. Cheng, Y., Rondo, A., Noguchi, H., Kajiro, H., Urita, K., Ohba, T., Kaneko, K. & Kanoh, H. (2009). Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity. Langmuir 25, 4510–4513. DOI: 10.1021/la803818p.10.1021/la803818p19271756Open DOISearch in Google Scholar

59. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wróbel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. 41, 1549–1557. DOI: 10.1039/c6nj02808j.10.1039/c6nj02808jOpen DOISearch in Google Scholar

60. Kapica-Kozar, J., Piróg, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: 10.1016/j.micromeso.2016.05.024.10.1016/j.micromeso.2016.05.024Open DOISearch in Google Scholar

61. Kapica-Kozar, J., Michalkiewicz, B., Wróbel, R.J., Mozia, S., Piróg, E., Kusiak-Nejman, E., Serafin, J., Morawski, A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPA-modified TiO2/titanate composite nanorods. New J. Chem. 41, 7870–7885. DOI: 10.1039/c7nj01549f.10.1039/c7nj01549fOpen DOISearch in Google Scholar

62. Yu-Dong D., Gan S., Qiang L., Xun Z. & Rong C. (2016). Bench scale study of CO2 adsorption performance of MgO in the presence of water vapour, Energy 112, 101–110. DOI: 10.1016/j.energy.2016.06.064.10.1016/j.energy.2016.06.064Open DOISearch in Google Scholar

63. Ferreira, D., Magalhaes, R., Taveira, P. & Mendes, A. (2011). Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Ind. Eng. Chem. Res. 50, 10201–10210. DOI: 10.1021/ie2005302.10.1021/ie2005302Open DOISearch in Google Scholar

64. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P. & Gupta, R. (2012). Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 51, 1438–1463. DOI: 10.1021/ie200686q.10.1021/ie200686qOpen DOISearch in Google Scholar

65. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloids Surf., A. 427, 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002Open DOISearch in Google Scholar

66. Kwiatkowski, M. (2008). Employing the new computer LBET class models with multivariant fitting to the analysis of single and double adsorption isotherms generated by the selected classical equations in different relative pressures. J. Math. Chem. 42, 815–835. DOI: 10.1007/s10910-006-9143-4.10.1007/s10910-006-9143-4Open DOISearch in Google Scholar

67. Kwiatkowski, M. (2007). Comparison of the evaluation reliability of microporous structure parameters by employing single and double adsorption isotherms. Colloids Surf., A. 294, 92–101. DOI: 10.1016/j.colsurfa.2006.07.050.10.1016/j.colsurfa.2006.07.050Open DOISearch in Google Scholar

68. Kwiatkowski, M. (2009). Computer analysis of the microporous structure of activated carbon fibres using the fast multivariant identification procedure of adsorption system parameters. Colloids Surf., A. 330, 266–275. DOI: 10.1007/s00894-007-0260-1.10.1007/s00894-007-0260-118219502Open DOISearch in Google Scholar

69. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011) The simplex optimization for high porous carbons preparation. Pol. J. Chem. Technol. 13, 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4Open DOISearch in Google Scholar

70. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption. 23, 551–561. DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4Open DOISearch in Google Scholar

71. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.10.1016/j.indcrop.2013.03.004Open DOISearch in Google Scholar

72. Kwiatkowski, M. (2013). Methane storage in carbonaceous porous materials. Przem. Chem. 92, 629–633.Search in Google Scholar

73. Kwiatkowski, M. & Duda, J.T. (2014). Fast multivariant analysis of the adsorption isotherm of the carbon dioxide and methane. Przem. Chem. 93, 878–881.Search in Google Scholar

74. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy 75, 549–554. DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016Open DOISearch in Google Scholar

75. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Of Hydrogen Energy 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008Open DOISearch in Google Scholar

76. Zielińska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kaleńczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chem. Phys. Lett. 647, 14–19. DOI: 10.1016/j.cplett.2016.01.036.10.1016/j.cplett.2016.01.036Open DOISearch in Google Scholar

77. Zielińska, B., Michalkiewicz, B., Mijowska, E. & Kaleń-czuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Res. Lett. 10, 1–7. DOI: 10.1186/s11671-015-1113-y.10.1186/s11671-015-1113-y462797026518029Open DOISearch in Google Scholar

78. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kaleńczuk, R.J. & Zielińska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrogen Energy 42, 30461–30469. DOI: 10.1016/j.ijhydene.2017.10.146.10.1016/j.ijhydene.2017.10.146Open DOISearch in Google Scholar

79. Baca, M., Cendrowski, K., Kukułka, W., Bazarko, G., Moszyński, D., Michalkiewicz, B., Kaleńczuk, R.J. & Zielińska, B. (2018). A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 8, 1–13. DOI: 10.3390/nano8090639.10.3390/nano8090639616331430134612Open DOISearch in Google Scholar

80. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873–881. DOI: 10.1016/j.apsusc.2017.05.136.10.1016/j.apsusc.2017.05.136Open DOISearch in Google Scholar

81. Wróblewska, A., Miądlicki, P., Sreńscek-Nazzal, J., Sadłowski, M., Koren, Z.C. & Michalkiewicz, B. (2018). Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Micropor. Mesopor. Mat. 258, 72–82. DOI: 10.1016/j.micromeso.2017.09.007.10.1016/j.micromeso.2017.09.007Open DOISearch in Google Scholar

82. Malko, M., Antosik, A.K., Wróblewska, A., Czech, Z., Wilpiszewska, K., Miądlicki, P. & Michalkiewicz, B. (2017). Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene. Pol. J. Chem. Technol. 19, 50–58. DOI: 10.1515/pjct-2017-0067.10.1515/pjct-2017-0067Open DOISearch in Google Scholar

83. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. 147, 150–160. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7Open DOISearch in Google Scholar

84. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010Open DOISearch in Google Scholar

85. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. 6, 397–401. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148Open DOISearch in Google Scholar

86. Yahya, M.A., Al-Qodah, Z. & Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46, 218–235.10.1016/j.rser.2015.02.051Search in Google Scholar

87. Grycova, B., Koutnik, I. & Pryszcz, A. (2016). Pyrolysisprocess for the treatment of food waste. Bioresource Technol. 218, 1203–1207. DOI:10.1016/j.biortech.2016.07.06410.1016/j.biortech.2016.07.06427474954Open DOISearch in Google Scholar

88. Lestinsky, P., Grycova, B., Pryszcz, A., Martaus, A. & Matejova, L. (2017). Hydrogen production from microwave catalytic pyrolysis of spruce sawdust. J. Anal. Appl. Pyrol. 124, 175–179. DOI:10.1016/j.jaap.2017.02.008.10.1016/j.jaap.2017.02.008Open DOISearch in Google Scholar

89. Grycova, B., Koutnik, I, Pryszcz, A. & Kaloc, M. (2016). Application of pyrolysis process in processing of mixed food wastes. Pol. J. Chem. Technol. 18, 19–23. DOI:10.1515/pjct-2016-0004.10.1515/pjct-2016-0004Open DOISearch in Google Scholar

90. Grycova, B., Pryszcz, A., Lestinsky, P. & Chamradova, K. (2017). Preparation and characterization of sorbents from food waste. Green Process. Synth. 6, 287–293. DOI:10.1515/gps-2016-0182.10.1515/gps-2016-0182Open DOISearch in Google Scholar

91. Grycova, B., Pryszcz, A., Lestinsky, P. & Chamradova, K. (2018). Influence of potassium hydroxide and method of carbonization treatment in garden and corn waste microwave pyrolysis. Biomass Bioenerg. 118, 40–45. DOI:10.1016/j.biombioe.2018.07.022.10.1016/j.biombioe.2018.07.022Open DOISearch in Google Scholar

92. Hernandez, J.R., Aquino F.L., Capareda, S.C. (2007). Activated carbon production from pyrolysis and steam activation of cotton gin trash. Am. Soc. Agric. Biol. Eng., 1–8.Search in Google Scholar

93. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069. DOI: 10.1515/pac-2014-1117.10.1515/pac-2014-1117Open DOISearch in Google Scholar

94. Sing, K.S.W. & Williams, R.T. (2004) Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 22, 773–782. DOI: 10.1260/0263617053499032.10.1260/0263617053499032Open DOISearch in Google Scholar

95. Jagiello, J. & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232. DOI: 10.1016/j.carbon.2004.01.022.10.1016/j.carbon.2004.01.022Open DOISearch in Google Scholar

96. Presser, V., McDonough, J., Yeon S.H. & Gogotsi Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066. DOI: 10.1039/C1EE01176F.10.1039/C1EE01176Open DOISearch in Google Scholar

97. Deng, S., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures,. Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014.04.115.10.1016/j.cej.2014.04.115Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering