Cite

1. Mosier, A.R., Syers, J.K. & Freney, J.R. (2004). Nitrogen fertilizer: an essential component of food, feed, and fiber production. In: A.R. Mosier, J.K. Syers, J.R. Freney (Eds.), Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment (pp. 3–15). SCOPE Publication Series 65. St. Louis, MI: Island Press.Search in Google Scholar

2. Brown, L.R. (1999). Feeding nine billion. In L.R. Brown, C. Flavin, H. French (Eds.), State of the world: A Worldwatch Institute report on progress toward a sustainable society. New York: W.W. Norton & Company.Search in Google Scholar

3. United Nations, Department of Economic and Social Affairs, Population Division, (2013). World Population Prospects: The 2012 Revision, DVD Edition.Search in Google Scholar

4. Heffer, P. & Prud’homme, M. (2017). Fertilizer Outlook 2017–2021, 85th International Fertilizer Industry Association Annual Conference, 22–24 May, Marrakech (Morocco): International Fertilizer Industry Association, Paris.Search in Google Scholar

5. van Cleemput, O., Zapata, F. & Vanlauwe, B. (2008). Use of tracer technology in mineral fertilizer management. In: Guidelines on Nitrogen Management in Agricultural Systems (pp. 19–126). Vienna, Austria: International Atomic Energy Agency.Search in Google Scholar

6. Dobermann, A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, 28–30 June. Frankfurt, Germany: International Fertilizer Industry Association.Search in Google Scholar

7. Smil, V.A. (1999). Nitrogen in crop production: An account of global flows, Global Biogeochem. Cycl. A3, 647.10.1029/1999GB900015Search in Google Scholar

8. Hauck, R.D. (1985). Slow release and bio-inhibitor--amended nitrogen fertilizers. In: O.P. Engelstad (Ed.), Fertilizer technology and use (p. 293–322). Madison, WI: Soil Science Society of America.10.2136/1985.fertilizertechnology.c8Search in Google Scholar

9. Shaviv, A. & Mikkelsen, R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res. 35, 1–12.10.1007/BF00750215Search in Google Scholar

10. Trenkel, M.E. (2010). Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. Paris, France: International Fertilizer Industry Association.Search in Google Scholar

11. Chien, S.H., Prochnow, L.I., Tu, S. & Snyder, C.S. (2011). Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review, Nutr. Cycl. Agroecosyst. 89, 229–255. DOI: 10.1007/s10705-010-9390-4.10.1007/s10705-010-9390-4Open DOISearch in Google Scholar

12. Finck, A. (1992). Fertilizers and their efficient use. In: D.J. Halliday, M.E. Trenkel, W. Wichmann, (Eds.), World Fertilizer Use Manual, Paris, France: International Fertilizer Industry Association.Search in Google Scholar

13. Shaviv, A. (2000). Advances in controlled release fertilizers, Adv. Agron. 71, 1–49. http://dx.doi.org/10.1016/S0065-2113(01)71011-510.1016/S0065-2113(01)71011-5Open DOISearch in Google Scholar

14. Peoples, M.B., Boyer, E.W., Goulding, K.W.T., Heffer, P., Ochwoh, V.A., Vanlauwe, B., Wood, S., Yagi, K. & van Cleemput, O. (2004). Pathways of nitrogen loss and their impacts on human health and the environment. In: A.R. Mosier, J.K. Syers, J.R. Freney (Eds.), Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment (pp. 53–70). SCOPE Publication Series 65. St. Louis, MI: Island Press.Search in Google Scholar

15. Davidson, D. & Gu, F.X. (2012). Materials for sustained and controlled release of nutrients and molecules to support plant growth. J. Agric. Food Chem. 60, 870–876. DOI: 10.1021/jf204092h.10.1021/jf204092hOpen DOISearch in Google Scholar

16. Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R., Mallin, M.A., Rogers, C.A., Wayne, P. & Wolfe, A.H. (2003). Human health effects of a changing global nitrogen cycle. Front. Ecol. Environ. 1(5), 240–246. DOI: 10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2.10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2Open DOISearch in Google Scholar

17. Matson, P.A., Naylor, R. & Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic and economic aspects of fertilizer management. Science, 280, 112–115. DOI: 10.1126/science.280.5360.112.10.1126/.280.5360.112Open DOISearch in Google Scholar

18. Craswell, E.T. & Godwin, D.C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr., 1, 1–9.Search in Google Scholar

19. Oertli, J.J. (1980). Controlled-release fertilizers. Fert. Res. 1, 103–123.10.1007/BF01073182Search in Google Scholar

20. Shaviv, A., (2005), Controlled Release Fertilizers. IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, International Fertilizer Industry Association Paris, France.Search in Google Scholar

21. Azeem, B., KuShaari, K., Man, Z.B., Basit, A. & Thanh, T.H., (2014). Review on materials and methods to produce controlled release coated urea fertilizer. J. Controlled Release 181, 11–21. https://doi.org/10.1016/j.jconrel.2014.02.02010.1016/j.jconrel.2014.02.020Open DOISearch in Google Scholar

22. Association of American Plant Food Control Officials (AAPFCO). (1997). Official Publication No. 50, T-29. West Lafayette, IN, USA: AAPFCO.Search in Google Scholar

23. Liu, G., Zotarelli, L., Li, Y., Dinkins, D., Wang, Q. & Ozores-Hampton, M. (2014). Controlled-Release and Slow Fertilizers as Nutrient Management Tools, Florida, Horticultural Sciences Department, UF/IFAS Extension, USA.10.32473/edis-hs1255-2014Search in Google Scholar

24. Akelah, A., (1996). Novel utilizations of conventional agrochemicals by controlled release formulations. Mater. Sci. Eng. C 4, 83–98.10.1016/0928-4931(96)00133-6Search in Google Scholar

25. Zhong, K., Lin, Z.T., Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y. & Liao, Z.W. (2013). Starch derivative-based superabsorbent with integration of water retaining and controlled-release fertilizers. Carbohyd. Polym. 92(2), 1367–1376.10.1016/j.carbpol.2012.10.030Search in Google Scholar

26. Perez-Garcia, S., Fernandez-Perez, M., Villafranca-Sanchez, M., Gonzales-Pradas, E. & Flores-Cespedes F. (2007). Controlled release of ammonium nitrate from ethylcellulose coated formulations. Ind. Eng. Chem. Res. 46, 3304–3311.10.1021/ie061530sSearch in Google Scholar

27. Fernandez-Perez, M., Garrido-Herrera, F. J., Gonzalez--Pradas, E., Villafranca-Sanchez, M. & Flores-Cespedes, F. (2008). Lignin and ethylcellulose as polymers in controlled release formulations of urea. J. Appl. Polym. Sci. 108, 3796–3803.10.1002/app.27987Search in Google Scholar

28. Ni, B., Liu, M. & Liu, S. (2009). Multifunctional slow--release urea fertilizer from ethylcellulose and superabsorbent coated formulation. Chem. Eng. J. 15(3), 892–898.10.1016/j.cej.2009.08.025Search in Google Scholar

29. Zheng, W., Pan, G. & Chen, J. (2016). Study on preparation and slow-release properties of coated urea fertilizer by using non-metallic minerals and ethylcellulose. Acta Mineralogica Sinica 36, 247–252.Search in Google Scholar

30. Hussain, R., Devi, R. & Maji T. (2012). Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iranian Polym. J. 21(8), 473–479.10.1007/s13726-012-0051-0Search in Google Scholar

31. Melaj, M.A. & Daraio, M.E. (2013). Preparation and characterization of potassium nitrate controlled-release fertilizers based on chitosan and xanthan layered tablets. J. Appl. Polym. Sci. 130, 2422–2428.10.1002/app.39452Search in Google Scholar

32. Lubkowski, K. (2014). Coating fertilizer granules with biodegradable materials for controlled fertilizer release. Environ. Eng. Manage. J. 13(10), 2573–2581.10.30638/eemj.2014.287Search in Google Scholar

33. Frohoff-Hulsmann, M.A., Schmitz, A. & Lippold B.C. (1999). Aqueous ethyl cellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets, Int. J. Pharmaceut. 177 (1), 69–82.10.1016/S0378-5173(98)00327-5Search in Google Scholar

34. Muschert, S., Siepmann, F., Leclercq, B., Carlin, B. & Siepmann, J. (2010). Simulated food effects on drug release from ethylcellulose: PVA–PEG graft copolymer-coated pellets, Drug Dev. Ind. Pharm. 36(2), 173–179.10.3109/0363904090320070619747068Search in Google Scholar

35. Muschert, S., Siepmann, F., Leclercq, B, Siepmann, J. (2010). Dynamic and static curing of ethylcellulose: PVA-PEG graft copolymer film coatings. Eur. J. Pharm. Biopharm. 78(3), 455–461. DOI: 10.1016/j.ejpb.2011.02.010.10.1016/j.ejpb.2011.02.01021349330Open DOISearch in Google Scholar

36. European Standard EN 13266. Slow-release fertilizers – Determination of the release of the nutrients – Method for coated fertilizers. European Committee for Standardization, Brussels, 2001.Search in Google Scholar

37. Lubkowski, K., Smorowska, A., Grzmil, B. & Kozłowska, A. (2015). Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid. J. Agric. Food Chem. 63(10) 2597–2605.10.1021/acs.jafc.5b0051825715823Search in Google Scholar

38. Kelbaliyev, G.I., Samedli, V.M., Samedov, M.M. & Kasimova, R.K. (2013). Experimental study and calculation of the effect of intensifying additives on the strength of superphosphate granules. Russ. J. Appl. Chem. 86, 1478–1482.10.1134/S1070427213100030Search in Google Scholar

39. Nie, X., Besant, R.W. & Evitts, R.W. (2008). An experimental study of moisture uptake and transport in a bed of urea particles. Granul. Matter 10, 301–308.10.1007/s10035-008-0091-5Search in Google Scholar

40. Clayton, W.E. (1995). Physical Properties of Fertilizers, Modern Techniques in Fertilizer Distribution and Handling. Muscle Shoals, USA.Search in Google Scholar

41. Bortolin, A., Aouada, F.A., de Moura, M.R., Ribeiro, C., Longo, E. & Mattoso, L.H.C. (2012). Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J. Appl. Polym. Sci. 123, 2291–2298.10.1002/app.34742Search in Google Scholar

42. Calabria, L., Vieceli, N., Bianchi, O., de Oliveira, R.V.B., Filho, I.N. & Schmidt, V. (2012). Soy protein isolate/poly(lactic acid) injection moulded biodegradable blends for slow release of fertilizers. Ind. Crops Prod. 36, 41–46.10.1016/j.indcrop.2011.08.003Search in Google Scholar

43. Pereira, E.I., Minussi, F.B., da Cruz, C.C.T., Bernardi, A.C.C. & Ribeiro, C. (2012). Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J. Agric. Food Chem. 60, 5267–5272.10.1021/jf300122922574809Search in Google Scholar

44. Costa, M.M.E., Cabral-Albuquerque, E.C.M., Alves, T.L.M., Pinto, J.C. & Fialho, R.L. (2013). Use of polyhydroxy-butyrate and ethyl cellulose for coating of urea granules. J. Agric. Food Chem. 61, 9984–9991.10.1021/jf401185y24059839Search in Google Scholar

45. Bortolin, A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. (2013). Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergetic effects for the slow release of fertilizers. J. Agric. Food Chem. 61, 7431&–7439.10.1021/jf401273n23822729Search in Google Scholar

46. Du, C., Zhou, J. & Shaviv, A. (2006). Release Characteristics of Nutrients from Polymer-coated Compound Controlled Release Fertilizers. J. Polym. Environ. 14, 223–230.10.1007/s10924-006-0025-4Search in Google Scholar

47. Huett, D.O. & Gogel, B.J. (2000). Longevities and nitrogen, phosphorus and potassium release patterns of polymer-coated controlled-release fertilizers at 30°C and 40°C. Commun. Soil Sci. Plant Anal. 31, 959–973.10.1080/00103620009370490Search in Google Scholar

48. Shoji, S. & Gandeza, A.T. (1992). Controlled release fertilizers with polyolefin resin coating. Kanno Printing Co. Ltd. Sendai, Japan.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering