Open Access

Membrane reactor for enzymatic depolymerization – a case study based on protein hydrolysis


Cite

1. Mahammad, S., Prud’homme, R.K., Roberts, G.R. & Khan, S.A. (2006). Kinetics of enzymatic depolymerization of guar galactomannan. Biomacromolecules 7(9), 2583-2590. DOI: 10.1021/bm060333+.10.1021/bm060333+Open DOISearch in Google Scholar

2. Muzzarelli, R.A.A, Stanic, V. & Ramos, V. (1998). Enzymatic depolymerization of chitins and chitosans. In: Methods in Biotechnology, Vol. 10: Carbohydrate Biotechnology Protocols, Ed. C. Bucke © Humana Press Inc., NJ.10.1007/978-1-59259-261-6_16Search in Google Scholar

3. Slominska, L., Grajek, W., Grzeskowiak, A. & Gocalek, M. (1998). Enzymatic starch saccharification in an ultrafiltration membrane reactor. Starch 50(9), 390-396. DOI: 0038- 9056/98/0909-0390$17.50+.50/0.10.1002/(SICI)1521-379X(199809)50:9<390::AID-STAR390>3.0.CO;2-WSearch in Google Scholar

4. Trusek-Holownia, A. & Noworyta, A. (2000). Dipeptide enzymatic synthesis in a two-phase membrane reactor. Chem. Pap. 54(6B), 442-447.Search in Google Scholar

5. Nguyenhuynh, T., Nithyanandam, R., Hwa Chong, Ch. &Krishnaiah, D. (2017). A review on using membrane reactors in enzymatic hydrolysis of cellulose, J. Eng. Sci. Technol. 12(4), 1129-1152.10.1016/j.bcab.2017.08.013Search in Google Scholar

6. Hang, H., Bao, S., Zhao, M., Wang, B., Zhou, S. & Jiang, B. (2015), Enzyme membrane reactor coupled with nanofiltration membrane process for difructose anhydride III from inulin conversion. Chem. Eng. J. 276, 75-82. DOI: 10.1016/j.cej.2015.04.018.10.1016/j.cej.2015.04.018Open DOISearch in Google Scholar

7. Olano-Martin, E., Mountzouris, K.C., Gibson, G.R. & Rastall, R.A. (2001). Continuous production of pectic oligosaccharides in an enzyme membrane reactor, J. Food Sci. 66 (7), 966-971. DOI: 10.1111/j.1365-2621.2001.tb08220.x.10.1111/j.1365-2621.2001.tb08220.xOpen DOISearch in Google Scholar

8. Marquez M.C. & Vazquez M.A. (1999). Modeling of enzymatic protein hydrolysis,” Proc. Biochem. 35, 111-117. DOI: 10.1016/S0032-9592(99)00041-2.10.1016/S0032-9592(99)00041-2Search in Google Scholar

9. Fernandez, A. & Riera F. (2013). β-Lactoglobulin tryptic digestion: a model approach for peptide release. Biochem. Eng. J. 70, 88-96. DOI: 10.1016/j.bej.2012.10.001.10.1016/j.bej.2012.10.001Open DOISearch in Google Scholar

10. Rawlings, N.D., Barrett, A.J. & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, 343-350. DOI: 10.1093/nar/gkr987.10.1093/nar/gkr987Search in Google Scholar

11. Trusek-Holownia, A. & Noworyta, A. (2015). A model of kinetics of the enzymatic hydrolysis of biopolymers - a concept for determination of hydrolysate composition. Chem. Eng. Proc. 89, 54-61. DOI: 10.1016/j.cep.2015.01.008.10.1016/j.cep.2015.01.008Open DOISearch in Google Scholar

12. Orecki, A. & Tomaszewska, M. (2007) The oily wastewater treatment using the nanofiltration process. Pol. J. Chem. Technol. 9 (4), 40-42. DOI: 10.2478/v10026-007-0086-8.10.2478/v10026-007-0086-8Open DOISearch in Google Scholar

13. Trusek-Holownia, A., Przybyl, A. & Noworyta, A. (2014). Zagospodarowanie odpadowej serwatki w kierunku aktywnych peptydow (in Polish). Inz. Ap. Chem. 53 (4), 314-315.Search in Google Scholar

14. Trusek-Holownia, A., Lech, M. & Noworyta, A. (2016). Protein enzymatic hydrolysis integrated with ultrafiltration: Thermolysin application in obtaining peptides. Chem. Eng. J. 305, 61-68. DOI: 10.106/j.cej.2016.05.087.10.1016/j.cej.2016.05.087Search in Google Scholar

15. Labus, K., Trusek-Holownia, A. & Noworyta, A. (2015), Kinetics of protein hydrolysis catalyzed by pepsin. In: 42nd International Conference of Slovak Society of Chemical Engineering proceedings, Tatranské Matliare, Slovakia, May 25-29, 2015. Ed. Jozef Markoš, Slovakia, 465-472.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering