Cite

1. Wiśniewski, P. (1993). Piwa historie niezwykłe. Warszawa: Print Shops PREGO .Search in Google Scholar

2. Stępień, M. (2000). Kodeks Hammurabiego. Alfa-Wero.Search in Google Scholar

3. Cichowski, K. (2006). Najstarsze centrum browarnicze w delcie Nilu. Alma Mater UJ. 83, 71.Search in Google Scholar

4. Ciałowicz, K.M. (2008). 10 lat badań na Wzgórzu Kurczaka. Alma Mater UJ, 99, 202.Search in Google Scholar

5. Hornsey, I.S. (2003). History of Beer and Brewing. London: RSC Publishing. DOI:10.1039/9781847550026.10.1039/9781847550026Open DOISearch in Google Scholar

6. Fałat, Z. (2005). Wszystko o piwie. Warszawa-Rzeszów: Ad Oculos.Search in Google Scholar

7. Dylkowski, W. (1963). Technologia browarnictwa. Warszawa: Wydawnictwo przemysłu lekkiego i spożywczego.Search in Google Scholar

8. Scurlock, J. & Andersen, B. (2005). Diagnoses in Assyrian and Babylonian Medicine: Ancient Sources, Translations, and Modern Medical Analyses. Urbana: University of Illinois Press.Search in Google Scholar

9. D’Arms, J.H. (1995). Heavy Drinking and Drunkenness in the Roman World: Four Questions for Historians. O. Murray & M. Tecusan eds. In Vino Veritas. London: British School at Rome, 304-317.Search in Google Scholar

10. Powell, A.M. (1993). Drugs and Pharmaceuticals in ancient Mesopotamia. The Healing Past, 47-67.Search in Google Scholar

11. Nelson, M. (2016). To your health! The role of beer in ancient medicine. In W. H. Salazar (Ed.), Beer: Production, consumption and health effects (pp. 1-25). Nova Science Publishers.Search in Google Scholar

12. O’Shea, R.S., Dasarathy, S. & McCullough, A.J. (2010). Alcoholic liver disease. Hepatology, 51(1), 307-328. DOI:10.1002/hep.2325810.1002/hep.23258Open DOISearch in Google Scholar

13. Fadda, F. (1998). Chronic ethanol consumption:from neuroadaptation to neurodegeneration. Prog. Neurobiol. 56(4), 385-431. DOI: 10.1016/S0301-0082(98)00032-X.10.1016/S0301-0082(98)00032-XOpen DOISearch in Google Scholar

14. Hermens, D.F. & Lagopoulos, J. (2018). Binge drinking and the young brain: A mini review of the neurobiological underpinnings of alcohol-induced blackout. Front. Psychol. 9, 1-7. DOI: 10.3389/fpsyg.2018.0001210.3389/fpsyg.2018.00012Open DOISearch in Google Scholar

15. Boffetta, P. & Hashibe, M. (2006). Alcohol and cancer. Lancet Oncol. 7(2), 149-156. DOI: 10.1016/S1470-2045(06)70577-010.1016/S1470-2045(06)70577-0Open DOISearch in Google Scholar

16. Stevens, J.F. & Page, J.E. (2004). Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 65(10), 1317-1330. DOI: 10.1016/j.phytochem.2004.04.025.10.1016/j.phytochem.2004.04.02515231405Search in Google Scholar

17. Zołnierczyk, A.K., Mączka, W.K., Grabarczyk, M., Wińska, K., Woźniak, E. & Anioł, M. (2015). Isoxanthohumol - Biologically active hop flavonoid. Fitoterapia, 103, 71-82. DOI: .10.1016/j.fitote.2015.03.00710.1016/j.fitote.2015.03.00725771121Open DOISearch in Google Scholar

18. Ayabe, T., Ohya, R., Kondo, K. & Ano, Y. (2018). Iso- α-acids, bitter components of beer, prevent obesity-induced cognitive decline. Scient. Reports, 8(1), 4760. DOI: 10.1038/s41598-018-23213-9.10.1038/s41598-018-23213-9585918229555941Open DOISearch in Google Scholar

19. Mojka, K. (2013). Charakterystyka mlecznych napojów fermentowanych. Probl. Hig. Epidemiol., 94(4)(4), 722-729.Search in Google Scholar

20. Art. 94 pkt 1 Ustawy o podatku akcyzowym (Dz.U. z 2017 r. poz. 43). Poland.10.18778/1509-877X.2018.01.03Search in Google Scholar

21. Müller, M., Bellut, K., Tippmann, J. & Becker, T. (2017). Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. Chem. Bio. Eng. Reviews 5, 310-326. DOI:10.1002/cben.20170001010.1002/cben.201700010Open DOISearch in Google Scholar

22. Kruger, J.E., Lineback, D.R. & Stauffer, C.E., Chemists, A.A. of C. (1987). Enzymes and Their Role in Cereal Technology. American Association of Cereal Chemists. Retrieved from https://books.google.pl/books?id=IEtjQgAACAAJSearch in Google Scholar

23. Esslinger, H.M. (2015). Handbook of Brewing. Climate Change 2013 - The Physical Science Basis (Vol. 1). DOI: 10.1017/CBO9781107415324.004.10.1017/CBO9781107415324.004Open DOISearch in Google Scholar

24. Muller, R. (1991). the Effects of Mashing Temperature and Mash Thickness on Wort Carbohydrate Composition. J. Instit. Brewing, 97(2), 85-92. DOI: 10.1002/j.2050-0416.1991.tb01055.x.10.1002/j.2050-0416.1991.tb01055.xOpen DOISearch in Google Scholar

25. Brányik, T., Silva, D.P., Baszczyňski, M., Lehnert, R., Almeida, E. & Silva, J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. J. Food Eng., 108(4), 493-506. DOI: 10.1016/j.jfoodeng.2011.09.020.10.1016/j.jfoodeng.2011.09.020Open DOISearch in Google Scholar

26. Ivanov, K., Petelkov, I., Shopska, V., Denkova, R., Gochev, V. & Kostov, G. (2016). Investigation of mashing regimes for low-alcohol beer production. J. Instit.Brewing, 122(3), 508-516.DOI: 10.1002/jib.351.10.1002/jib.351Open DOISearch in Google Scholar

27. Khan, A.W., Lamb, K.A. & Schneider, H. (1988). Recovery of Fermentable Sugars from the Brewers Spent Grains by the Use of Fungal Enzymes. Process Biochem., 23(6), 172-175.Search in Google Scholar

28. Macheiner, D., Adamitsch, B.F., Karner, F. & Hampel, W.A. (2003). Pretreatment and Hydrolysis of Brewer’s Spent Grains. Eng. Life Sci., 3(10), 401-405. DOI: 10.1002/elsc.200301831.10.1002/elsc.200301831Open DOISearch in Google Scholar

29. Schur, F. (1983). Ein neues verfharen herstellung von alkoholfreien bier. Proceedings of the 19th Eur. Brewery Convent. Congress, 353-360.Search in Google Scholar

30. Perpète, P., Collin, S. (1999). Contribution of 3-methylthiopropionaldehyde to the worty flavor of Alcohol-free beers. J. Agr. Food Chem. 47(6), 2374-2378. DOI: 10.1021/jf9811323.10.1021/jf9811323Open DOISearch in Google Scholar

31. Attenborough, W.M. (1988). Evaluation of processes for the production of low- and non-alcohol beer. Ferment. 2(2), 40-44.Search in Google Scholar

32. Kobayashi, F. (2016). Inactivation of beer yeast by microbubbled carbon dioxide at low pressure and quality evaluation of the treated beer. In W. Salazar (Ed.), In beer: Production, consumption and health effects (p. 257). Nova science publishers.Search in Google Scholar

33. Verstrepen, K. J., Derdelinckx, G., Verachtert, H., Delvaux, F. R. (2003). Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61(3), 197-205. DOI: 10.1007/s00253-002-1200-8.10.1007/s00253-002-1200-8Open DOISearch in Google Scholar

34. Lebeau, T., Jouenne, T. & Junter, G.A. (1998). Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microbiol. Technol. 22(6), 434-438. DOI: 10.1016/S0141-0229(97)00214-7.10.1016/S0141-0229(97)00214-7Open DOISearch in Google Scholar

35. Strejc, J., Siristova, L., Karabin, M., Almeida e Silva, J. B. & Branyik, T. (2013). Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Instit. Brewing. 119(3), 149-155. DOI: 10.1002/jib.72.10.1002/jib.72Open DOISearch in Google Scholar

36. Klewicka, E. (2008). Bakterie kwasu octowego. In Z. Libudzisz (Ed.), Mikrobiologia techniczna. Mikroorganizmy w biotechnologii, ochronie środowiska i produkcji żywności T.2 (pp. 59-73). Warszawa: Wydaw. Nauk. PWN.Search in Google Scholar

37. Pilkington, P.H., Margaritis, A., Mensour, N.A. & Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. J. Instit. Brewing. 104(1), 19-31. DOI: 10.1002/j.2050-0416.1998.tb00970.x10.1002/j.2050-0416.1998.tb00970.xOpen DOISearch in Google Scholar

38. Tuszyński, T. (2008). Immobilizacja drobnoustrojów. Laboratorium 10, 34-38.Search in Google Scholar

39. Brányik, T., Vicente, A., Oliveira, R. & Teixeira, J. (2004). Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 88(1), 84-93. DOI: 10.1002/bit.20217.10.1002/bit.2021715389484Open DOISearch in Google Scholar

40. Trusek-Holownia, A. (2008). Wastewater treatment in a microbial membrane bioreactor - a model of the process. Desalination 221(1-3), 552-558. DOI: 10.1016/j.desal.2007.01.116 .10.1016/j.desal.2007.01.116Open DOISearch in Google Scholar

41. Bony, M., Bony, M., Thines-sempoux, D., Thines-Sempoux, D., Barre, P., Barre, P. & Blondin, B. (1997). Localization and Cell Surface Anchoring of the. Microbiology 179(15), 4929-36.Search in Google Scholar

42. Verbelen, P.J., De Schutter, D.P., Delvaux, F., Verstrepen, K.J. & Delvaux, F.R. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Letters 28(19), 1515-1525. DOI: 10.1007/s10529-006-9132-5.10.1007/s10529-006-9132-516937245Open DOISearch in Google Scholar

43. Naydenova, V., Badova, M., Vassilev, S., Iliev, V., Kaneva, M. & Kostov, G. (2014). Encapsulation of brewing yeast in alginate/chitosan matrix: Lab scale optimization of lager beer fermentation. Biotechnol. Biotechnolog. Equipment. 28(2), 277-284. DOI: 10.1080/13102818.2014.910373.10.1080/13102818.2014.910373443384726019512Open DOISearch in Google Scholar

44. Mensour, N.A., Margaritis, A., Briens, C.L., Pilkington, H. & Russell, I. (1997). New Developments in the Brewing Industry Using Inmobilised Yeast Cell Bioreactor Systems. J. Inst. Brewing. 103(6), 363-370. DOI: 10.1002/j.2050-0416.1997.tb00965.x.10.1002/j.2050-0416.1997.tb00965.xOpen DOISearch in Google Scholar

45. Van Dieren, B. (1995). Yeast metabolism and the production of alcohol-free beer. In Immobilized Yeast Applications in the Brewery Industry (pp. 66-76). Espoo, Finland: Hans Carl Getranke-Fachverlag.Search in Google Scholar

46. Inez, B., Figueiredo, C., Fontes, A., Patrick, P., Pimenta, D.S. & Souza, C. De. (2017). Crossing Techniques Using Cachaça ( Brazilian Spirit ) Yeasts 83(20), 1-17.10.1128/AEM.01582-17562699328778887Search in Google Scholar

47. Puerari, C., Strejc, J., Souza, A.C., Karabi n, M., Schwan, R.F. & Bra¡nyik, T. (2016). Optimization of alcohol-free beer production by lager and cachaca yeast strains using response surface methodology. J. Inst. Brewing 122(1), 69-75. DOI: 10.1002/jib.30610.1002/jib.306Open DOISearch in Google Scholar

48. Navrátil, M., Dömény, Z., Šturdík, E., Šmogrovičová, D. & Gemeiner, P. (2002). Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle. Biotechnol. Appl. Biochem. 35(2), 133. DOI: 10.1042/BA20010057.10.1042/BA2001005711916455Open DOISearch in Google Scholar

49. Mortazavian, A.M., Razavi, S.H., Mousavi, S.M., Malganji, S. & Sohrabvandi, S. (2014). The effect of Saccharomyces strain and fermentation conditions on quality prameters of non-alcoholic beer. J. Paramed. Sci. 5(3), 21-26.Search in Google Scholar

50. De Francesco, G., Turchetti, B., Sileoni, V., Marconi, O. & Perretti, G. (2015). Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Instit. Brewing 121(1), 113-121. DOI: 10.1002/jib.185.10.1002/jib.185Open DOISearch in Google Scholar

51. Baranowski, K., Salamon, A., Michałowska, D., Baca, E. & Kraśna, D. (2002). Sposób wytwarzania piwa o małej zawartości alkoholu etylowego oraz szczepy drożdży do wytwarzania piwa o małej zawartości alkoholu etylowego. Patent No. 98846, Poland.Search in Google Scholar

52. Mohammadi, A., Razavi, S.H., Mousavi, S.M. & Rezaei, K. (2011). A Comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae, Saccharomyces ludwigii and Saccharomyces rouxii on brewer’s spent grain. Brazil. J. Microbiol. 42(2), 605-615. DOI: 10.1590/S1517-83822011000200025.10.1590/S1517-83822011000200025Open DOISearch in Google Scholar

53. Gibson, B., Geertman, J.M.A., Hittinger, C.T., Krogerus, K., Libkind, D., Louis, E.J. & Sampaio, J.P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 17(4), 1-13. DOI: 10.1093/femsyr/fox038.10.1093/femsyr/038Open DOISearch in Google Scholar

54. Lide, D.R., Baysinger, G., Berger, L.I., Goldberg, R. N., Kehiaian, H.V, Kuchitsu, K. & Zwillinger, D. (2004). CRC Handbook of Chemistry and Physics. CRC Press.Search in Google Scholar

55. Huige, N.J., Sanchez, G.W. & Leidger, A.R. (1990). Process for Preparing a Nonalcoholic (Less the 0.5 Volume Percent Alcohol) Malt Beverage. Patent No.4970082A, USA.Search in Google Scholar

56. Caluwaerts, H.J.J. (1995). Process for the manufacture of an alcohol-free beer having the organoleptic properties of a lager type pale beer. Patent No. 5384135 USA.Search in Google Scholar

57. Sohrabvandi, S., Mousavi, S.M., Razavi, S.H., Mortazavian, A.M. & Rezaei, K. (2010). Alcohol-free beer: Methods of production, sensorial defects, and healthful effects. Food Rev. Internat. 26(4), 335-352. DOI: 10.1080/87559129.2010.496022.10.1080/87559129.2010.496022Open DOISearch in Google Scholar

58. Craig, A.J.M. (1991). Counter-current gas-liquid contacting device. Patent No. 4995945A, USA.Search in Google Scholar

59. Wright, A.J. & Pyle, D.L. (1996). An investigation into the use of the spinning cone column for in situ ethanol removal from a yeast broth. Proc. Biochem. 31(7), 651-658. DOI: 10.1016/S0032-9592(96)00017-9.10.1016/S0032-9592(96)00017-9Open DOISearch in Google Scholar

60. Huerta-Pérez, F., & Pérez-Correa, J.R. (2018). Optimizing ethanol recovery in a spinning cone column. J. Taiwan Inst. Chem. Eng. 83, 1-9. DOI: 10.1016/j.jtice.2017.11.030.10.1016/j.jtice.2017.11.030Open DOISearch in Google Scholar

61. Moreira da Silva, P. & De Wit, B. (2008). Spinning cone column distillation - innovative technology for beer dealcoholisation. Cerevisia 33, 91-95.Search in Google Scholar

62. Leskosek, I.J. & Mitrovic, M. (1994). Optimization of beer dialysis with cuprophane membranes. J. Inst. Brew., 100, 287-292.10.1002/j.2050-0416.1994.tb00826.xSearch in Google Scholar

63. Moonen, H. & Niefind, H.J. (1982). Alcohol reduction in beer by means of dialysis. Desalination 41(3), 327-335. DOI: 10.1016/S0011-9164(00)88733-0.10.1016/S0011-9164(00)88733-0Open DOISearch in Google Scholar

64. Leskošek, I., Mitrović, M. & Nedović, V. (1995). Factors influencing alcohol and extract separation in beer dialysis. World J Microbiol. Biotechnol. 11(5), 512-514. DOI: 10.1007/BF00286364.10.1007/BF00286364Open DOISearch in Google Scholar

65. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 43(9), 2317-2348. DOI: 10.1016/S0011-9164(03)00373-4.10.1016/S0011-9164(03)00373-4Open DOISearch in Google Scholar

66. Noworyta, A., Koziol, T. & Trusek-Holownia, A. (2003). A system for cleaning condensates containing ammonium nitrate by the reverse osmosis method. Desalination 156 (1-3), 397-402. DOI: 10.1016/j.desal.2015.12.011.10.1016/j.desal.2015.12.011Open DOISearch in Google Scholar

67. Ali, W., Rehman, W.U., Younas, M., Ahmad, M.I. & Gul, S. (2015). Reverse osmosis as one-step wastewater treatment : a case study on groundwater pollution. Pol. J. Chem. Technol. 17(4), 42-48. DOI: 10.1515/pjct-2015-0067.10.1515/pjct-2015-0067Open DOISearch in Google Scholar

68. Jastřembská, K., Jiránková, H. & Mikulášek, P. (2017). Dealcoholisation of standard solutions by reverse osmosis and diafiltration. Desalin. Water Treat. 75, 357-362. DOI: 10.5004/dwt.2017.20544.10.5004/dwt.2017.20544Open DOISearch in Google Scholar

69. Catarino, M., Mendes, A., Madeira, L.M. & Ferreira, A. (2007). Alcohol removal from beer by reverse osmosis. Separ. Sci. Technol. 42(13), 3011-3027. DOI: 10.1080/01496390701560223.10.1080/01496390701560223Open DOISearch in Google Scholar

70. Gnekow, B.R. (1991). Low and non-alcoholic beverages produced by simultaneous double reverse osmosis. Patent No.4999209A, USA.Search in Google Scholar

71. Criscuoli, A., Drioli, E., Capuano, A., Memoli, B. & Andreucci, V.E. (2002). Human plasma ultrafiltrate purification by membrane distillation: process optimisation and evaluation of its possible application on-line. Desalination 147, 147-148. DOI: 10.1016/S0011-9164(02)00602-1.10.1016/S0011-9164(02)00602-1Open DOISearch in Google Scholar

72. Ali, A., Quist-Jensen, C.A., Drioli, E. & Macedonio F.(2018). Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment, Desalination 434, 161-168. DOI: 10.1016/j.desal.2017.11.035.10.1016/j.desal.2017.11.035Open DOISearch in Google Scholar

73. Wang, Q., Li, N., Bolto, B., Hoang, M. & Xie, Z. (2016). Desalination by pervaporation: A review. Desalination 387, 46-60. DOI: 10.1016/j.desal.2016.02.036.10.1016/j.desal.2016.02.036Open DOISearch in Google Scholar

74. Feng, X. & Huang, R.Y.M. (1997). Liquid Separation by Membrane Pervaporation: A Review. Industr. Eng. Chem. Res.36(4), 1048-1066. DOI: 10.1021/ie960189g.10.1021/ie960189gOpen DOISearch in Google Scholar

75. Kaminski, W., Marszalek, J. & Tomczak, E. (2018). Water desalination by pervaporation - Comparison of energy consumption. Desalination 433, 89-93. DOI: 10.1016/j.desal.2018.01.014.10.1016/j.desal.2018.01.014Open DOISearch in Google Scholar

76. Smitha, B., Suhanya, D., Sridhar, S. & Ramakrishna, M. (2004). Separation of organic-organic mixtures by pervaporation- A review. J. Membr. Sci. 241(1), 1-21. DOI: 10.1016/j.memsci.2004.03.042.10.1016/j.memsci.2004.03.042Open DOISearch in Google Scholar

77. Noworyta, A., Trusek-Holownia, A., Mielczarski, S. & Kubasiewicz-Ponitka, M. (2006). An integrated pervaporationbiodegradation process of phenolic wastewater treatment. Desalination 198(1-3), 191-197. DOI: 10.1016/j.desal.2006.01.025.10.1016/j.desal.2006.01.025Open DOISearch in Google Scholar

78. Mangindaan, D., Khoiruddin, K. & Wenten, I.G. (2018). Beverage dealcoholization processes: Past, present, and future. Trends Food Sci. Technol. 71, 36-45. DOI: 10.1016/j. tifs.2017.10.018.10.1016/j.tifs.2017.10.018Open DOISearch in Google Scholar

79. Olmo, Á. Del, Blanco, C.A., Palacio, L., Prádanos, P. & Hernández, A. (2014). Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. J. Food Eng.133, 1-8. DOI: 10.1016/j.jfoodeng.2014.02.014.10.1016/j.jfoodeng.2014.02.014Open DOISearch in Google Scholar

80. Paz, A.I., Blanco, C.A., Andrés-Iglesias, C., Palacio, L., Prádanos, P. & Hernández, A. (2017). Aroma recovery of beer flavors by pervaporation through polydimethylsiloxane membranes. J. Food Proc. Eng.40(6). DOI: 10.1111/jfpe.12556.10.1111/jfpe.12556Open DOISearch in Google Scholar

81. Onsekizoglu, P. (2012). Membrane Distillation: Principle, Advances, Limitations and Future Prospects in Food Industry, Distillation - Advances from Modeling to Applications, Sina Zereshki (Ed.), ISBN: 978-953- 51-0428-5.Search in Google Scholar

82. Varavuth, S., Jiraratananon, R. & Atchariyawut, S. (2009). Experimental study on dealcoholization of wine by osmotic distillation process. Separ. Purif. Technol. 66(2), 313-321. DOI: 10.1016/j.seppur.2008.12.011.10.1016/j.seppur.2008.12.011Open DOISearch in Google Scholar

83. Barancewicz, M. & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chem. Papers 66(2), 85-91. DOI: 10.2478/s11696-011-0088-0.10.2478/s11696-011-0088-0Open DOISearch in Google Scholar

84. Gryta, M. (2018). The long-term studies of osmotic membrane. Chem. Pap. 72, 99-107. DOI: 10.1007/s11696-017-0261-1.10.1007/s11696-017-0261-1576061529367800Open DOISearch in Google Scholar

85. Kujawa, J., Guillen-Burrieza, E., Arafat, H.A., Kurzawa, M., Wolan, A., Kujawski, W. (2015). Raw juice concentration by osmotic membrane distillation process with hydrophobic polymeric membranes. Food Bioproc. Technol. 8 (10), 2146-2158, DOI: 10.1007/s11947-015-1570-4.10.1007/s11947-015-1570-4Open DOISearch in Google Scholar

86. Drioli, E. (2017), Membrane Distillation, MDPI, Basel, Switzerland, ISBN 978-3-03842-460-4.Search in Google Scholar

87. Purwasasmita, M., Kurnia, D., Mandias, F.C., Khoiruddin, Wenten, I. G. (2015). Beer dealcoholization using non-porous membrane distillation. Food Bioprod. Proces. 94, 180-186. DOI: 10.1016/j.fbp.2015.03.001.10.1016/j.fbp.2015.03.001Open DOISearch in Google Scholar

88. Liguori, L., De Francesco, G., Russo, P., Perretti, G., Albanese, D. & Di Matteo, M. (2015). Production and characterization of alcohol-free beer by membrane process. Food Bioprod. Proces. 94, 158-168. DOI: 10.1016/j.fbp.2015.03.003.10.1016/j.fbp.2015.03.003Open DOISearch in Google Scholar

89. Ritchie, H. & Roser, M. (2018). Alcohol consumption. Retrieved May 29, 2018, from https://ourworldindata.org/alcohol-consumptionSearch in Google Scholar

90. Wójcik, H. (2018). Wzrasta popularność piwa bezalkoholowego. To najszybciej rosnący segment rynku w Polsce. Retrieved May 29, 2018, from https://www.wiadomoscihandlowe.pl/artykuly/wzrasta-popularnosc-piwa-bezalkoholowego-to-najszy,46382Search in Google Scholar

91. Riu-Aumatell, M., Miró, P., Serra-Cayuela, A., Buxaderas, S. & López-Tamames, E. (2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME-GC-MS. Food Resear. Internat. 57, 196-202. DOI: 10.1016/j.foodres.2014.01.016.10.1016/j.foodres.2014.01.016Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering