Open Access

Treatment of petroleum refinery effluent using ultrasonic irradiation

   | Jan 11, 2019

Cite

1. Bharati, R. & Suresh, S. (2017). Biosynthesis of ZnO/ SiO2 nanocatalyst with palash leaves’ powder for treatment of petroleum refinery effluent. Resource-Efficient Technol. 3 (4), 528-541. DOI: 10.1016/j.reffit.2017.08.004.10.1016/j.reffit.2017.08.004Open DOISearch in Google Scholar

2. Chen, C., Wei, L., Guo, X., Guo, S. & Yan, G. (2014). Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides. Fuel Proc. Technol. 124, 165-173. DOI: 10.1016/j.fuproc.2014.02.024.10.1016/j.fuproc.2014.02.024Open DOISearch in Google Scholar

3. Chen, C., Yu, J., Yoza, B.A., Li, Q.X. & Wang, G. (2015). A novel “wastes-treat-wastes” technology: Role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J. Environ. Manage. 152, 58-65. DOI: 10.1016/j.jenvman.2015.01.022.10.1016/j.jenvman.2015.01.02225617869Open DOISearch in Google Scholar

4. Davarnejad, R., Mohammadi, M. & Ismail, A.F. (2014). Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: Statistical comparison. J. Water Proc. Eng. 3, 18-25. DOI: 10.1016/j.jwpe.2014.08.002.10.1016/j.jwpe.2014.08.002Open DOISearch in Google Scholar

5. Hasan, D.B., Abdul Aziz, A.R. & Daud, W.M.A. (2012). Oxidative mineralization of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. and des. 90 (2), 298-307. DOI: 10.1016/j.cherd.2011.06.010.10.1016/j.cherd.2011.06.010Open DOISearch in Google Scholar

6. Diya’uddeen, B.H, Wan Daud, W.M., Abdul Aziz, A.R. (2011). Treatment technologies for petroleum refinery effluents: A review. Proc. Saf. and Environ. Prot. 89, 95-105. DOI: 10.1016/j.psep.2010.11.003.10.1016/j.psep.2010.11.003Open DOISearch in Google Scholar

7. Aljoboury, D.A, Palaniandy, P., Bin Abdul Aziz, H. & Feroz, S. (2015). Treatment of petroleum wastewater using combination of solar photo-two catalyst TiO2 and photo-Fenton process. J. Environ. Chem. Eng. 3, 1117-1124. DOI: 10.1016/j.jece.2015.04.012.10.1016/j.jece.2015.04.012Open DOISearch in Google Scholar

8. Shahrezaei, F., Mansouri, Y., Zinatizadeh, A.A.L. & Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol. 221, 203-212. DOI: 10.1016/j.powtec.2012.01.003.10.1016/j.powtec.2012.01.003Search in Google Scholar

9. Khan, W.Z, Najeeb, I., Tuiyebayeva, M. & Makhtayeva, Z. (2015). Refinery wastewater degradation with titanium dioxide, zinc oxide, and hydrogen peroxide in a photocatalytic reactor. Proc. Safety and Environ. Prot. 94, 479-486. DOI: 10.1016/j.psep.2014.10.007.10.1016/j.psep.2014.10.007Open DOISearch in Google Scholar

10. Al-Muhtaseb, A.H. & Khraisheh, M. (2015). Photocatalytic removal of phenol from refinery wastewater: Catalytic activity of Cu-doped titanium dioxide. J. Wat. Proc. Eng. 8, 82-90. DOI: 10.1016/j.jwpe.2015.09.004.10.1016/j.jwpe.2015.09.004Search in Google Scholar

11. Saien, J. & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J. Hazard. Mater. 148, 491-495. DOI: 10.1016/j.jhazmat.2007.03.001.10.1016/j.jhazmat.2007.03.001Open DOISearch in Google Scholar

12. Stepnowski, P., Siedlecka, E.M, Behrendb, P. & Jastorff, B. (2002). Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water. Resour. 36, 2167-2172. DOI: 10.1016/S0043-1354(01)00450-X.10.1016/S0043-1354(01)00450-XOpen DOISearch in Google Scholar

13. Talei, M., Mowla, D., Esmaeilzadeh, F. (2015). Ozonation of an effluent of oil refineries for COD and sulfide removal. Des. and Wat. Treat. 56(6), 1648-1656. DOI: 10.1080/19443994.2014.951968.10.1080/19443994.2014.951968Open DOISearch in Google Scholar

14. Diya’uddeen, B.H., Pouran, S.R., Abdul, Aziz, A.R., Nashwan, S.M., Ashri, W.M., Daud, W. & Shaaban, M.G. (2015). Hybrid of Fenton and sequencing batch reactor for petroleum refinery wastewater treatment. J. Ind. and Eng. Chem. 25, 186-191. DOI: 10.1016/j.jiec.2014.10.033.10.1016/j.jiec.2014.10.033Open DOISearch in Google Scholar

15. Tony, M.A., Purcell, P.J. & Zhao, Y. (2012). Oil refinery wastewater treatment using physicochemical, Fenton and Photo- Fenton oxidation processes. J. Environ. Sci. Health, Part A. 47, 435-440. DOI: 10.1080/10934529.2012.646136.10.1080/10934529.2012.64613622320696Open DOISearch in Google Scholar

16. Sun, Y., Zhang, Y. & Quan, X. (2008). Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. and Pur. Technol. 62, 565-570. DOI: 10.1016/j.seppur.2008.02.027.10.1016/j.seppur.2008.02.027Open DOISearch in Google Scholar

17. Rueda-Marquez, J.J., Levchuk, I., Salcedo, I., Acevedo- Merino, A. & Manzano, M.A. (2016). Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance. Water Resour. 91, 86-96. DOI: 10.1016/j.watres.2015.12.051.10.1016/j.watres.2015.12.05126773490Open DOISearch in Google Scholar

18. Sponza, D.T. & Oztekin, R. (2010). Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater. Chem. Eng. J. 162, 142-150. DOI: 10.1016/j. cej.2010.05.014.10.1016/j.cej.2010.05.014Open DOISearch in Google Scholar

19. Sponza, D.T. & Oztekin, R. (2011). Removals of some hydrophobic polyaromatic hydrocarbons(PAHs) and Daphnia magna acute toxicity in a petrochemical industry wastewater with ultrasound in Izmir-Turkey. Sep. and Pur. Tech. 77, 301-311. DOI: 10.1016/j.seppur.2010.12.021.10.1016/j.seppur.2010.12.021Open DOISearch in Google Scholar

20. Rasheed, Q.J, Pandian, K. & Muthukumar, K. (2011). Treatment of petroleum refinery wastewater by ultrasounddispersed nanoscale zero-valent iron particles. Ultr. Sonochem.18, 1138-1142. DOI: 10.1016/j.ultsonch.2011.03.015.10.1016/j.ultsonch.2011.03.01521507703Open DOISearch in Google Scholar

21. Sangave, P.C. & Pandit, A.B. (2004). Ultrasound pretreatment for enhanced biodegradability of the distillery wastewater. Ultr. Sonochem. 11, 197-203. DOI: 10.1016/j.ultsonch.2004.01.026.10.1016/j.ultsonch.2004.01.026Open DOISearch in Google Scholar

22. Sangave, P.C. & Pandit, A.B. (2006). Ultrasound and enzyme assisted biodegradation of distillery wastewater. J. Environ. Manage. 80, 36-46. DOI: 10.1016/j.jenvman.2005.08.010.10.1016/j.jenvman.2005.08.010Open DOISearch in Google Scholar

23. Ramteke, L.P. & Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. and Eng. Chem. 28, 247-260. DOI: 10.1016/j.jiec.2015.02.022.10.1016/j.jiec.2015.02.022Open DOISearch in Google Scholar

24. Gogate, P.R., Mujumdar, S. & Pandit, A.B. (2003). Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Adv. Environ. Resour. 7, 283-299. DOI: 10.1016/S1093-0191(01)00133-2.10.1016/S1093-0191(01)00133-2Open DOISearch in Google Scholar

25. Gogate, P. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501-551. DOI: 10.1016/S1093-0191(03)00032-7.10.1016/S1093-0191(03)00032-7Search in Google Scholar

26. Jamalluddin, N.A. & Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultr. Sonochem. 18, 669-678. DOI: 10.1016/j.ultsonch.2010.09.004.10.1016/j.ultsonch.2010.09.00420933452Open DOISearch in Google Scholar

27. Abdullah, A.Z. & Liang, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J. Hazard. Mater. 173, 159-167. DOI: 10.1016/j. jhazmat.2009.08.060.10.1016/j.jhazmat.2009.08.06019740600Open DOISearch in Google Scholar

28. Anju, S.G., Jyothi, K.P., Joseph, S., Suguna, Y. & Yesodharan, E.P. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO2 and ZnO-TiO2. Res. J. Rec. Scien. 1, 191-201.Search in Google Scholar

29. Yılmaz, E. & Fındık, S. (2017). Sonocatalytic treatment of baker’s yeast effluent. J. wat. Reu. And Des.7(1) , 88-96. DOI: 10.2166/wrd.2016.166.10.2166/wrd.2016.166Open DOISearch in Google Scholar

30. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosp. 68, 42-52. DOI:10.1016/j.chemosphere.2006.12.052.10.1016/j.chemosphere.2006.12.05217276488Open DOISearch in Google Scholar

31. Eren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Environ. Manage. 104, 127-141. DOI: 10.1016/j.jenvman.2012.03.028.10.1016/j.jenvman.2012.03.02822495014Open DOISearch in Google Scholar

32. Teo, K.C., Xu, Y. & Yang, C. (2001). Sonochemical degradation for toxic halogenated organic compounds. Ultr. Sonochem. 8, 241-246. DOI: 10.1016/S1350-4177(01)00083-9.10.1016/S1350-4177(01)00083-9Open DOISearch in Google Scholar

33. Gogate, P.R. & Katekhaye, S.N. (2012). A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem. Eng. Process. 61, 23-29. DOI: 10.1016/j.cep.2012.06.016.10.1016/j.cep.2012.06.016Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering