Open Access

Environmental friendly method of the epoxidation of limonene with hydrogen peroxide over the Ti-SBA-15 catalyst


Cite

1. Auriemma, F., De Rosa, C., Di Caprio, M.R., Di Girolamo, R., Ellis, W.C. & Coates, G.W. (2015). Stereocomplexed Poly(Limonene Carbonate): A unique example of the cocrystallization of amorphous enantiomeric polymers. Angew. Chem. Int. Ed., 54, 1215-1218. DOI: 10.1002/anie.201410211.10.1002/anie.20141021125420706Open DOISearch in Google Scholar

2. Nunes, L.C.C., De Almeida, A.A.C., De Carvalho, R.B.F., Cardoso, L.T., De Moraes, J.N.E., De Souza, D.P. & De Freitas, R.J. (2012). BR Patent No 102012006336.Search in Google Scholar

3. Yapa, A.S., Wang, H., Pyle, M., Shrestha, T.B., Troyer, D.L., Wendel, S.O. & Bossmann, S.H. (2016). Abstracts, 51st Midwest Regional Meeting of the American Chemical Society, Manhattan, KS, United States, October 26-28, 312.Search in Google Scholar

4. Chen, T., Levin, D. & Pupalli, S. (2016) Patent WO No US17543, PCT Int. Appl.Search in Google Scholar

5. De Carvalho, C.C.C.R. & Da Fonseca, M.M.R. (2006). Carvone: Why and how should one bother to produce this terpene, Food Chem. 95:413-422. DOI: 10.1016/j.foodchem.2005.01.003.10.1016/j.foodchem.2005.01.003Open DOISearch in Google Scholar

6. Panda, H. (2005). The Complete Technology Book on Herbal Perfumes & Cosmetics, 234-248, Delhi : National Institute of Industrial Research.Search in Google Scholar

7. Nadealian, Z., Mirkhani, V., Yadollahi, B., Moghadam, M., Tangestaninejad, S. & Mohammadpoor-Baltork, I. (2013) Selective oxidation of alkenes using [BMIM]5[PW11ZNO39]3H2O hybrid catalyst. J. Iran. Chem. Soc. 10(4), 777-782.10.1007/s13738-012-0212-2Search in Google Scholar

8. Wroblewska, A., Makuch, E. & Miadlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121-129. DOI: 10.1016/j.cattod.2015.11.008.10.1016/j.cattod.2015.11.008Search in Google Scholar

9. Granadeiro, C.M., Barbosa, A.D.S., Ribeiro, S., Santos, I.C.M.S., De Castro, B., Cunha-Silva, L. & Balula, S.S. (2014). Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catal. Sci. Technol. 4: 1416-1425. DOI: 10.1039/C3CY00853C.10.1039/C3CY00853Open DOISearch in Google Scholar

10. Hua, L., Chen, J., Chen, C., Zhu, W., Yu, Y., Zhang, R., Guo, L., Song, B., Gan, H. & Hou, Z. (2014). Immobilization of polyoxometalate-based ionic liquid on carboxymethyl cellulose for epoxidation of olefins. New J. Chem. 38, 3953-3959. DOI: 10.1039/C4NJ00270A.10.1039/C4NJ00270ASearch in Google Scholar

11. Serra, S. (2015). MnO2/TBHP: A versatile and userfriend ly combination of reagents for the oxidation of allylic and benzylic methylene functional groups. Eur. J. Org. Chem. 29, 6472-6478. DOI: 10.1002/ejoc.201500829.10.1002/ejoc.201500829Open DOISearch in Google Scholar

12. Silvestre-Alberó, J., Domine, M.E., Jordá, J.L., Navarro, M.T., Reya, F., Rodríguez-Reinoso, F. & Corma, A. (2015). Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Appl. Catal. A, 507, 14-25. DOI: 10.1016/j.apcata.2015.09.029.10.1016/j.apcata.2015.09.029Open DOISearch in Google Scholar

13. Fernandes, C.I., Carvalho, M.D., Ferreira, L.P., Nunes, C.D. & Vaz, P.D. (2014). Organometallic Mo complex anchored to magnetic iron oxide nanoparticles as highly recyclable epoxidation catalyst. J. Organomet. Chem. 760, 2-10. DOI: 10.1016/j.jorganchem.2014.01.035.10.1016/j.jorganchem.2014.01.035Open DOISearch in Google Scholar

14. Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I. & Saeedi, M.S. (2010). Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(III) salophen supported on multi-wall carbon nanotubes. Appl. Catal. A, 381,233-241. DOI: 10.1016/j.apcata.2010.04.013.10.1016/j.apcata.2010.04.013Open DOISearch in Google Scholar

15. Lima, L.F., Cardozo-Filho, L., Arroyo, P.A., Márquez- -Alvarez, H. & Antunes, O.A.C. (2005). Metal(salen)-catalyzed oxidation of limonene in supercritical CO2. React. Kinet. Catal. Lett. 84, 69-77. DOI: 10.1007/s11144-005-0192-7.10.1007/s11144-005-0192-7Open DOISearch in Google Scholar

16. Ma, B., Zhao, W., Zhang, F., Zhang, Y., Wu, S. & Ding, Y. (2014). A new halide-free efficient reaction-controlled phase-transfer catalyst based on silicotungstate of [(C18H37)2(CH3)2N]3[SiO4H(WO5)3] for olefin epoxidation, oxidation of sulfides and alcohols with hydrogen peroxide. RSC Adv. 4: 32054-32062. DOI: 10.1039/C4RA04036H.10.1039/404036Open DOISearch in Google Scholar

17. Santos, I.C.M.S., Gamelas, J.A.S., Duarte, T.A.G., Simoes, M.M.Q., Neves, M.G.P.M.S., Cavaleiro, J.A.S. & Cavaleiro, A.M.V. (2017). Catalytic homogeneous oxidation of monoterpenes and cyclooctene with hydrogen peroxide in the presence of sandwich-type tungstophosphates [M4(H2O)2(PW9O34)2]n−, M = CoII, MnII and FeIII. J. Mol. Catal. A: Chem. 426, 593-599. DOI: 10.1016/j.molcata.2016.10.021.10.1016/j.molcata.2016.10.021Open DOISearch in Google Scholar

18. Nunes, C.D., Vaz, P.D., Veiros, L.F., Moniz, T., Rangel, M., Realista, S., Mourato, A.C. & Calhorda, M.J. (2015). Vanadyl cationic complexes as catalysts in olefin oxidation. Dalton Trans., 44,5125-5138. DOI: 10.1039/C4DT03174A.10.1039/C4DT03174Open DOISearch in Google Scholar

19. Nadealian, Z., Mirkhani, V., Yadollahi, B., Moghadam, M., Tangestaninejad, S. & Mohammadpoor-Baltrok, I. (2013). Selective oxidation of alkenes using [bmim]5[PW11ZnO39]·3H2O hybrid catalyst. J. Iran. Chem. Soc. 10, 777-782. DOI: 10.1007/ s13738-012-0212-2.10.1007/s13738-012-0212-2Search in Google Scholar

20. Bento, A, Sanches, A., Vaz, P.D. & Nunes, C.D. (2016) Catalytic Application of Fe-doped MoO2 Tremella-Like Nanosheets. Top. Catal. 59, 1123-1131. DOI: 10.1007/s11244-016-0631-x.10.1007/s11244-016-0631-xOpen DOISearch in Google Scholar

21. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z.C. & Michalkiewicz, B. (2017). Fe/nanoporous carbon catalysts obtained from molasses for the limonene oxidation process. Catal. Lett. 147, 150-160. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7Open DOISearch in Google Scholar

22. Cagnoli, M.V., Casuscelli, S.G., Alvarez, A.M., Bengoa, J.F., Gallegos, N.G., Samaniego, N.M., Cribello, M.E., Ghinoe, G.E., Perez, C.F., Herrero, E.R. & Marchetti, S.G. (2005). “Clean” limonene epoxidation using Ti-MCM-41 catalyst. Appl. Catal. A: General, 287(2),227-235. DOI: 10.1016/j.apcata.2005.04.001.10.1016/j.apcata.2005.04.001Open DOISearch in Google Scholar

23. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19, 19907-19922. DOI: 10.3390/molecules191219907.10.3390/191219907Open DOISearch in Google Scholar

24. Berube, F., Kleitz, F. & Kaliaguine, S. (2008). A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis. J. Phys. Chem. 112(37),14403-14411. DOI: 10.1021/jp803853m.10.1021/jp803853mOpen DOISearch in Google Scholar

25. Makuch, E. & Wróblewska, A. (2013). Preparation of titanium-silicate catalyst Ti-SBA-15. Chemik, 67,811-816.Search in Google Scholar

26. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 catalyst used in the process of allyl alcohol epoxidation with hydrogen peroxide. J. Adv. Oxid. Technol. 17, 44-52. DOI: 10.1515/jaots-2014-0106.10.1515/jaots-2014-0106Open DOISearch in Google Scholar

27. Wróblewska, A. & Makuch, E. (2012). The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reac. Kinet. Mech. Cat. 105, 451-468. DOI: 10.1007/s11144-011-0405-1.10.1007/s11144-011-0405-1Open DOISearch in Google Scholar

28. Melero, J.A., Iglesias, J., Arsuaga, J.M., Sainz-Pardo, J., de Frutos, P. & Blazquez, S. (2007). Synthesis and catalytic activity of organic-inorganic hybrid Ti-SBA-15 materials. J. Mater. Chem. 17, 377-385. DOI: 10.1039/B610868G.10.1039/B610868Open DOISearch in Google Scholar

29. Corma, A., Esteve, P. & Martinez, A. (1996). Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst: the influence of the hydrophilicity-hydrophobicity of the zeolite. J. Catal. 161,11-19. DOI: 10.1006/jcat.1996.0157 .10.1006/jcat.1996.0157Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering