Open Access

Improving the Carbon Dioxide Uptake Efficiency of activated Carbons Using a Secondary Activation With Potassium Hydroxide


Cite

1. NASA’s Goddard Institute for Space Studies. Retrieved June 29, 2018, from https://climate.nasa.gov/vital-signs/global--temperature/Search in Google Scholar

2. Pfeffer, W.T., Harper, J.T. & O’Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321 1340-1343. DOI: 10.1126/science.1159099.10.1126/.1159099Open DOISearch in Google Scholar

3. Wallace, J.M., & Hobbs, P.V. (2006). Atmospheric Science An Introductory Survey (2nd ed.). Seattle, USA: ElsevierSearch in Google Scholar

4. Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M. & Morgan, V.I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic and fi rn. J. Geophys. Res.-Atmos. 101 4115-4128. DOI: https://doi.org/10.1029/95JD03410.10.1029/95JD03410Open DOISearch in Google Scholar

5. Tans, P. & Keeling, R. Trends in Atmospheric Carbon Dioxide. Retrieved June 29, 2018, from https://www.esrl.noaa.gov/gmd/ccgg/trends/data.htmlSearch in Google Scholar

6. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309 159-171. DOI: https://doi.org/10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005Open DOISearch in Google Scholar

7. Harald, D., Frisvold, P., Gunningham, N., Jaccard, M., Langhelle, O., Meadowcroft, J., Praetorius, B., Scrase, I., Sharp, J., Sinclair, D., Stephens, J.C., Tjernshaugen, A., Vergragt, P.J., von Stechow, C. & Watson, J. (2009). Caching the Carbon, the Politics and Policy of Carbon Capture and Storage. Chelteham: Edward Elgar Publishing Limited.Search in Google Scholar

8. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys.Pol. A. 129, 402-405. DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402Search in Google Scholar

9. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modifi cation of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394-401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394Search in Google Scholar

10. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129 158-161. DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158Search in Google Scholar

11. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J., Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202, 241-249. DOI: https://doi.org/10.1016/j.micromeso.2014.10.013.10.1016/j.micromeso.2014.10.013Open DOISearch in Google Scholar

12. Kapica-Kozar, J., Piróg, E., Wrobel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117-127. DOI: https://doi. org/10.1016/j.micromeso.2016.05.024.10.1016/j.micromeso.2016.05.024Open DOISearch in Google Scholar

13. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modifi ed with various amines used as sorbents of carbon dioxide. New J. Chem. 41(4) 1549-1557. DOI: 10.1039/C6NJ02808J.10.1039/C6NJ02808JOpen DOISearch in Google Scholar

14. Kapica-Kozar, J., Michalkiewicz, B., Wrobel, R.J., Mozia, S., Piróg, E., Kusiak-Nejman, E., Serafi n, J., Morawski A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPAmodifi ed TiO2/titanate composite nanorods. 41, 7870-7885. DOI: 10.1039/C7NJ01549F.10.1039/C7NJ01549Open DOISearch in Google Scholar

15. Figueiredo, J.L. (2013). Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A. 1 9351-9364. DOI: 10.1039/C3TA10876G.10.1039/310876Open DOISearch in Google Scholar

16. Serafi n, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18 73-79. DOI: https://doi. org/10.1016/j.jcou.2017.01.006.10.1016/j.jcou.2017.01.006Open DOISearch in Google Scholar

17. Danish, M. & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sust. Energ. Rev. 87 1-21. DOI: https://doi.org/10.1016/j.rser.2018.02.003.10.1016/j.rser.2018.02.003Open DOISearch in Google Scholar

18. Wiśniewska, M., Nowicki, P., Nosal-Wiercińska, A., Pietrzak, R., Szewczuk-Karpisz, K., Ostolska, I. & Sternik, D. (2017). Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloid Surface A. 514, 137-145. DOI: https://doi.org/10.1016/j. colsurfa.2016.11.053.10.1016/j.colsurfa.2016.11.053Open DOISearch in Google Scholar

19. Popa, N. & Visa, M. (2017). The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Adv. Powder Technol. 28(8) 1866-1876. DOI: https://doi.org/10.1016/j.apt.2017.04.014.10.1016/j.apt.2017.04.014Search in Google Scholar

20. Qu, S., Wan, J., Dai, C., Jin, T. & Ma, F. (2018). Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloy Compd. 751 107-116. DOI: https://doi.org/10.1016/j.jallcom.2018.04.123.10.1016/j.jallcom.2018.04.123Open DOISearch in Google Scholar

21. Górka, J. & Jaroniec, M. (2011). Hierarchically porous phenolic resin based carbons obtained by block copolymer colloidal silica templating and post synthesis activation with carbon dioxide and water vapor. Carbon 49 154-160. DOI: https://doi.org/10.1016/j.carbon.2010.08.055.10.1016/j.carbon.2010.08.055Open DOISearch in Google Scholar

22. Meng, L.Y. & Park, S.J. (2014). Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole. J. Solid State Chem. 281 90-94. DOI: https://doi. org/10.1016/j.jssc.2014.06.005.10.1016/j.jssc.2014.06.005Open DOISearch in Google Scholar

23. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). The increase of the microporosity and CO2 adsorption capacity of the commercial activated carbon CWZ-22 by KOH treatment. In R.S. Dariani (Ed), Microporous and mesoporous materials (2-19). Rijeka: InTech. DOI: 10.5772/63672.10.5772/63672Open DOISearch in Google Scholar

24. Arami-Niya, A., Daud, W.M.A.W. & Mjalli, F.S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des. 89(6) 657-664.DOI: https://doi.org/10.1016/j.cherd.2010.10.003.10.1016/j.cherd.2010.10.003Open DOISearch in Google Scholar

25. Mitra, S. (2016). U.S. Patent No. 9938152. Washington, D.C.: U.S. Patent and Trademark Offi ce.Search in Google Scholar

26. Guskos, N., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I. & Wróbel, R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Mater. Sci. Poland23(4) 102-106.Search in Google Scholar

27. Wrobel, R.J., Hełminiak, A., Arabczyk, W. & Narkiewicz, U. (2014). Studies on the Kinetics of Carbon Deposit Formation on Nanocrystalline Iron Stabilized with Structural Promoters. J. Phys. Chem. C. 118(28) 15434-15439. DOI: 10.1021/jp4108377.10.1021/jp4108377Open DOISearch in Google Scholar

28. Yu, K., Li, J., Qi, H. & Liang, Ce. (2018). High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diam. Relat. Mater.86 139-145. DOI: https://doi.org/10.1016/j.diamond.2018.04.019.10.1016/j.diamond.2018.04.019Open DOISearch in Google Scholar

29. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalyst for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268 111-120. DOI: https://doi.org/10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010Open DOISearch in Google Scholar

30. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modifi ed in dielectric barrier discharge plasma. Appl. Surf. Sci.420 873-881. DOI: https://doi.org/10.1016/j.apsusc.2017.05.136.10.1016/j.apsusc.2017.05.136Open DOISearch in Google Scholar

31. Pełech, R., Milchert, E. & Wróbel, R. (2006). Adsorption dynamics of chlorinated hydrocarbons from multi-component aqueous solution onto activated carbon. J. Hazard. Mater. 137 1479-1487. DOI: https://doi.org/10.1016/j.jhazmat.2006.04.023.10.1016/j.jhazmat.2006.04.02316730892Open DOISearch in Google Scholar

32. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski A.W. & Wrobel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: https://doi.org/10.1155/2017/7359591.10.1155/2017/7359591Open DOISearch in Google Scholar

33. Tiwari, D., Bhunia, H. & Bajpai, P.K. (2018). Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl. Surf. Science 439 760-771. DOI: https://doi.org/10.1016/j.apsusc.2017.12.203.10.1016/j.apsusc.2017.12.203Open DOISearch in Google Scholar

34. Ludwinowicz, J. & Jaroniec, M. (2015). Effect of activation agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94 673-679. DOI: https://doi.org/10.1016/j.carbon.2015.07.052.10.1016/j.carbon.2015.07.052Open DOISearch in Google Scholar

35. Presser, V., McDonough, J., Yeon, S.H. & Gogotsi, Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4 3059-3066. DOI: 10.1039/C1EE01176F.10.1039/C1EE01176Open DOISearch in Google Scholar

36. Wrobel, R.J. & Becker, S. (2010). Carbon and sulphur on Pd(111) and Pt(111): Experimental problems during cleaning of the substrates and impact of sulphur on the redox properties of CeOx in the CeOx/Pt(111) system. Vacuum 84(11) 1258-1265 DOI: https://doi.org/10.1016/j.vacuum.2010.01.056.10.1016/j.vacuum.2010.01.056Open DOISearch in Google Scholar

37. Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A. & Orfao, J.J.M. (1999). Modifi cation of the surface chemistry of activated carbons. Carbon 37 1379-1389. DOI: https://doi.org/10.1016/S0008-6223(98)00333-9.10.1016/S0008-6223(98)00333-9Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering