Open Access

Preparation of Activated Carbon from the Biodegradable film for Co2 Capture Applications


Cite

1. Manan, Z.A., Nawi, W.N.R.M., Alwi, S.R.W. & Klemes, J.J. (2017). Advances in Process Integration research for CO2 emission reduction - A review. J. Clean. Prod. 167, 1-13. DOI: 10.1016/j.jclepro.2017.08.138.10.1016/j.jclepro.2017.08.138Open DOISearch in Google Scholar

2. IPCC, Direct global warming potentials, IPCC fourth assess. Rep. Clim. Change 2007 (2007) 2.10.2.Search in Google Scholar

3. Stroud, T., Smith, T.J., Saché, E. L., Santos, J.L., Centeno, M.A., Arellano-Garcia, H., Odriozol, J.A. & Reina T.R., (2018). Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Cat.B-Environ. 224, 125-135. DOI.org/10.1016/j.apcatb.2017.10.047.10.1016/j.apcatb.2017.10.047Open DOISearch in Google Scholar

4. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Cat. Lett.,129(1-2), 142-148, DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Open DOISearch in Google Scholar

5. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007), Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A-Gen. 329, 137-147, DOI: 10.1016/j.apcata.2007.07.006.10.1016/j.apcata.2007.07.006Open DOISearch in Google Scholar

6. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ ZSM-5 catalyst. Int. J. Hydrogen. Energ. 41(20), 8668-8678, DOI: 10.1016/j.ijhydene.2016.01.097.10.1016/j.ijhydene.2016.01.097Open DOISearch in Google Scholar

7. Michalkiewicz, B. & Majewska, J. (2014). Diametercontrolled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39(9), 4691-4697, DOI: 10.1016/j.ijhydene.2013.10.149.10.1016/j.ijhydene.2013.10.149Open DOISearch in Google Scholar

8. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Signifi cance of Ni content and temperature. New Carbon Mater. 29(2), 102-108, DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3Search in Google Scholar

9. Lu, G.Q., Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H. & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purifi cation: a critical review and perspective. J. Colloid. Interface. Sci. 314, 589-603. DOI: 10.1016/j.jcis.2007.05.067.10.1016/j.jcis.2007.05.06717588594Open DOISearch in Google Scholar

10. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22(3), 635-646, DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6Search in Google Scholar

11. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller Nanotub Car N. 21(4), 333-345, DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543Open DOISearch in Google Scholar

12. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129(1), 153-157, DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153Search in Google Scholar

13. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E., Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology. 21(14), DOI: 10.1088/0957-4484/21/14/14530810.1088/0957-4484/21/14/14530820234080Open DOISearch in Google Scholar

14. Ziebro, J., Lukasiewicz, I., Grzmil B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy Compd. 485(1-2), 695-700, DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039Open DOISearch in Google Scholar

15. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111(4), 1013-1016, DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-zSearch in Google Scholar

16. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62(1), 106-113, DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Open DOISearch in Google Scholar

17. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82(8-9), 627-628.Search in Google Scholar

18. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59(6A), 403-408.Search in Google Scholar

19. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe- ZSM-5. Appl. Catal. A-Gen. 277(1-2), 147-153, DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005Open DOISearch in Google Scholar

20. Michalkiewicz, B., Ziebro, J. & Srenscek-Nazzal, J. (2006). Direct oxidation of methane to formaldehyde. Przem. Chem. 85(8-9), 624-626.Search in Google Scholar

21. Kałucki, K.,Michalkiewicz B., Morawski A.W., Arabczyk W. & Ziebro J. (1995). Przem Chem. 74(4), 135-136.Search in Google Scholar

22. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63(2), 105-110, DOI: 10.2478/s11696-008-0100-510.2478/s11696-008-0100-5Open DOISearch in Google Scholar

23. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394(1-2), 266-268, DOI: 10.1016/j.apcata.2011.01.01410.1016/j.apcata.2011.01.014Open DOISearch in Google Scholar

24. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure. Catal. Comun. 8(12), 1939-1942, DOI: 10.1016/j. catcom.2007.03.01410.1016/j.catcom.2007.03.014Open DOISearch in Google Scholar

25. Michalkiewicz, B. & Kalucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81(3), 165-170.Search in Google Scholar

26. Jarosinska, M., Lubkowski, K.,Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterifi cation. Catal. Lett. 126(3-4), 407-412, DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8Open DOISearch in Google Scholar

27. Michalkiewicz, B. (2006). Methane esterifi cation i oleum. Chem. Pap-Chem. Zvesti. 60(5), 371-374, DOI: 10.2478/ s11696-006-0067-z.10.2478/s11696-006-0067-zOpen DOISearch in Google Scholar

28. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase, Kinet Catal 44(6), 801-805, DOI: 10.1023/B:KICA.0000009057.79026.0b10.1023/B:KICA.0000009057.79026.0bOpen DOISearch in Google Scholar

29. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation, J. Catal. 215(1), 14-19, DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XOpen DOISearch in Google Scholar

30. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal A 307(2), 270-274, DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006Open DOISearch in Google Scholar

31. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10(2), 20-26, DOI: 10.2478/v10026-008-0023-5.10.2478/v10026-008-0023-5Open DOISearch in Google Scholar

32. Michalkiewicz, B. (2006). Esterifi cation of methane as the fi rst stage in converting the natural gas to methanoll. Przem. Chem. 85(8-9), 620-623.Search in Google Scholar

33. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14(4), 19-21, DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-zOpen DOISearch in Google Scholar

34. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterifi cation in oleum catalyzed by iodine. Chem. Eng. J. 154(1-3), 156-161, DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046Open DOISearch in Google Scholar

35. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membrane Sci.286(1-2), 223-227, DOI: 10.1016/j.memsci.2006.09.039.10.1016/j.memsci.2006.09.039Open DOISearch in Google Scholar

36. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crop Pord. 47, 153-159, DOI: 10.1016/j.indcrop. 2013.03.004.10.1016/j.indcrop.2013.03.004Open DOISearch in Google Scholar

37. Duda, J.T., Kwiatkowski, M., Milewska-Duda, J. (2010). Application of clustering based gas adsorption models to analysis of microporous structure of carbonaceous materials. Appl. Surf Sci. 256(17), 5243-5248, DOI:10.1016/j.apsusc.2009.12.111.10.1016/j.apsusc.2009.12.111Open DOISearch in Google Scholar

38. Kwiatkowski, M., Duda, J.T. & Milewska-Duda, J. (2014). Application of the LBET class models with the original fl uid statemodel to an analysis of single, double and triple carbon dioxide, methane and nitrogen adsorption isotherms. Colloids Surf. A: Physicochem. Enginer. Asp. 457(1), 449-454, DOI: 10.1016/j.colsurfa.2014.06.021.10.1016/j.colsurfa.2014.06.021Open DOISearch in Google Scholar

39. Kwiatkowski, M., Duda, J.T. (2014). Szybka wielowariantowa analiza izoterm adsorpcji ditlenku węgla i metanu. Przem. Chem. 93(6), 878-881, DOI: 10.12916/przemchem.2014.878.Search in Google Scholar

40. Michalkiewicz B., Majewska, J., Kadziotka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modifi ed photocatalyst, J. CO2 Util. 5, 47-52, DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004Open DOISearch in Google Scholar

41. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New. J. Chem. 38(2), 604-610, DOI: 10.1039/c3nj01187a.10.1039/c3nj01187aOpen DOISearch in Google Scholar

42. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1-8, DOI: 10.1016/j. jcat.2012.03.025.10.1016/j.jcat.2012.03.025Open DOISearch in Google Scholar

43. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60(11), 3148-3158, DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294Open DOISearch in Google Scholar

44. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Srenscek-Nazzal, J., Morawski, A.W., Wrobel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36(1-2), 478-492, DOI: 10.1177/0263617417704527.10.1177/0263617417704527Open DOISearch in Google Scholar

45. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids, Chem Eng J. 309, 159-171, DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005Open DOISearch in Google Scholar

46. Kwiatkowski, M., Policicchio, A., Seredych, M. & Bandosz, T.J. (2016). Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon, 98, 250-258, DOI: 10.1016/j.carbon.2015.11.019.10.1016/j.carbon.2015.11.019Open DOISearch in Google Scholar

47. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modifi cation of Commercial Activated Carbons for CO2 Adsorption. Acta. Phys. Pol. A. 129(3), 394-401, DOI: 48. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014)., Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain Chem. Eng. 2 (12), 2837-2844, DOI: 10.1021/sc500603h.10.1021/sc500603hOpen DOISearch in Google Scholar

49. Deepu, J.B., Lange M., Cherkashinin, G., Issanin, A., Staudt, R. & Schneider J.J. (2013). Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon, 61, 616-623. DOI.org/10.1016/j. carbon.2013.05.045.10.1016/j.carbon.2013.05.045Open DOISearch in Google Scholar

50. Cinke, M., Li, J., Bauschlicher, C., Ricca, A. & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 376 761-766. DOI.org/10.1016/ S0009-2614(03)01124-2.10.1016/S0009-2614(03)01124-2Open DOISearch in Google Scholar

51. Zgrzebnicki, M., Krauze, N., Gesikiewicz-Puchalska, A., Kapica-Kozar, J., PirogE., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. DOI: 10.1155/2017/7359591.10.1155/2017/7359591Open DOISearch in Google Scholar

52. Serafi n, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73-79, DOI: 10.1016/j. jcou.2017.01.006.10.1016/j.jcou.2017.01.006Open DOISearch in Google Scholar

53. Mohd, A., Ghani W.A.W.A.K., Resitanim, N.Z. & Sanyang, L., (2013). A Review: Carbon Dioxide Capture: Biomass- Derived-Biochar and Its Applications, J. Dispers. Sci. Technol. 34(7), 2013, 974-984, DOI: 10.1080/01932691.2012.704753.10.1080/01932691.2012.704753Open DOISearch in Google Scholar

54. Alabadi, A., Razzaque, S., Yang, Y., Chen, S. & Tan, B. (2015). Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem. Eng. J. 281, 606-612. DOI: 10.1016/j.cej.2015.06.032.10.1016/j.cej.2015.06.032Open DOISearch in Google Scholar

55. Davida, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322-332. DOI: 10.1016/j. jaap.2014.09.021.10.1016/j.jaap.2014.09.021Open DOISearch in Google Scholar

56. Hao, W., Björkman, E., Lilliestråle, M. & Hedin, N. (2013). Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energ. 112, 526-532. DOI: org/10.1016/j.apenergy.2013.02.028.10.1016/j.apenergy.2013.02.028Open DOISearch in Google Scholar

57. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016).Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2, Acta Phys Pol A. 129(1), 158-161, DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158Search in Google Scholar

58. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents, Acta Phys Pol A. 129(3), 402-404, DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402Search in Google Scholar

59. Yang, X., Yi, H., Tang, X., Zhao, S., Yang Z., Ma, Y., Feng, T. & Cui, X. (2018). Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure, J. Environ. Sci. 67, 104-114, DOI: 10.1016/j. jes.2017.06.032.10.1016/j.jes.2017.06.03229778142Open DOISearch in Google Scholar

60. Gupta, H. & Singh, S. (2018). Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon, Environmental Technology & Innovation 10, 208-214, DOI: 10.1016/j.eti.2018.03.001.10.1016/j.eti.2018.03.001Search in Google Scholar

61. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., Nourmoradi, H. & Goudarzi, B. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresource Technol. 258 48-56 DOI: 10.1016/j.psep.2018.04.026.10.1016/j.psep.2018.04.026Open DOISearch in Google Scholar

62. Shen, F., Liu, J., Zhang, Z., Dong, Y., Gu, Ch. (2018). Density functional study of hydrogen sulfi de adsorption mechanism on activated carbon. Fuel. Process. Technol. 171, 258-264DOI: 10.1016/j.fuproc.2017.11.026.10.1016/j.fuproc.2017.11.026Open DOISearch in Google Scholar

63. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kalenczuk, R.J. & Zielinska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int J Hydrogen Energ 42(52), 30461-30469, DOI: 10.1016/j.ijhydene.2017.10.146.10.1016/j.ijhydene.2017.10.146Open DOISearch in Google Scholar

64. Wenelska, K., Michalkiewicz, B., Chen, X., Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity, Energy 75, 549-554, DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016Open DOISearch in Google Scholar

65. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage, Int J Hydrogen Energ. 38(36), 16179-16184, DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008Open DOISearch in Google Scholar

66. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kalenczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage, Chem Phys Lett. 647, 14-19, DOI: 10.1016/j.cplett.2016.01.036.10.1016/j.cplett.2016.01.036Open DOISearch in Google Scholar

67. Zielinska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application, Nanoscale Res Lett. 10. DOI: 10.1186/s11671-015-1113-y.10.1186/s11671-015-1113-y462797026518029Search in Google Scholar

68. Glonek, K., Wroblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wrobel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017)., Oxidation of limonene using activated carbon modifi ed in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873-881. DOI: 10.1016/j.apsusc.2017.05.136.10.1016/j.apsusc.2017.05.136Open DOISearch in Google Scholar

69. Wroblewska, A., Makuch, E., Mlodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as effi cient catalysts for limonene oxidation. Green Porsec Synth6(4), 397-401. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148Open DOISearch in Google Scholar

70. Serafi n, J. (2017). Utlization of spent dregs for the production activated carbon for CO2 adsorption. Pol J Chem Technol. 19(2), 44-50. DOI: 10.1016/S1750-5836(07)00094-1.10.1016/S1750-5836(07)00094-1Open DOISearch in Google Scholar

71. Mlodzik, J., Wroblewska, A., Makuch, E., Wrobel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol, Catal. Today. 268, 111-120, DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010Open DOISearch in Google Scholar

72. Kwiatkowski, M., Srenscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption, 23(4), 551-561, DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4Open DOISearch in Google Scholar

73. Kwiatkowski, M. & Broniek, E. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloid. Surface. A. 529, 443-453, DOI: 10.1016/j. colsurfa.2017.06.028.10.1016/j.colsurfa.2017.06.028Open DOISearch in Google Scholar

74. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid. Interf. Sci. 486, 277-286, DOI: 10.1016/j.jcis.2016.10.003.10.1016/j.jcis.2016.10.00327721076Open DOISearch in Google Scholar

75. Kwiatkowski, M., Kalderis, D. & Diamadopoulos, E. (2017). Numerical analysis of the infl uence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric acid. J. Phys. Chem. Solids. 105, 81-85, DOI: 10.1016/j.jpcs.2017.02.006.10.1016/j.jpcs.2017.02.006Open DOISearch in Google Scholar

76. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloids Surf. A. 427, 47-52, DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002Open DOISearch in Google Scholar

77. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol J Chem Technol., 13(4), 63-70, DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4Open DOISearch in Google Scholar

78. Zee, M., Stoutjesdijk P.A.A. & Heijden, D.W. (1997). Structure-biodegradation relationships of polymeric materials. 1. Effect of degree of oxidation on biodegradability of carbohydrate polymers. J. Polymer. Environ. 3(4), 235-242.Search in Google Scholar

79. Grima, S., Bellon- Maurel, V., Feuilloley, P. & Silvestre, F. (2002). Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulation. J Polymer Environ. 8(4), 183-195. DOI: 10.1023/A:1015297727244.10.1023/A:1015297727244Open DOISearch in Google Scholar

80. Jayasekara, R., Harding, I., Bowater, I. & Lonergan, G. (2005). Biodegradability of Selected Range of Polymers and Polymer Blends and Standard Methods for Assessment of Biodegradation. J. Polymer. Environ. 13, 231-251. DOI: 10.1007/s10924-005-4758-2.10.1007/s10924-005-4758-2Open DOISearch in Google Scholar

81. Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch, 65, 22, DOI: 10.1002/ star.201200159.10.1002/star.201200159Open DOISearch in Google Scholar

82. Spychaj, T., Wilpiszewska, K. & Antosik, A. (2015). Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite fi lms. Carbohyd. polym. 128. DOI: 10.1016/j. carbpol.2015.04.02310.1016/j.carbpol.2015.04.02326005142Open DOISearch in Google Scholar

83. Serafi n, J., Czech, Z., Antosik, A., Wilpiszewska, K. & Michalkiewicz, B. 2016 P 418159.Search in Google Scholar

84. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. & Siemienewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57, 603. DOI: https://doi.org/10.1515/iupac.57.0007 .10.1515/iupac.57.0007Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering