Open Access

Optimization and Evaluation of Alkali-Pretreated Paeonia Ostii Seed Coats as Adsorbent for the Removal of Mb From Aqueous Solution


Cite

1 . Sewu, D.D., Boakye, P. & Woo, S.H. (2017). HighlySearch in Google Scholar

efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. J. Bioresour. Technol. 224, 206-213.DOI: 10.1016/j.biortech.2016.11.009.10.1016/j.biortech.2016.11.00927839858Open DOISearch in Google Scholar

2 . Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M. & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modifi ed brown, red and green macroalgae-Effect of pretreatment. J. Chem. Eng. 307, 435-446. DOI: 10.1016/j.cej.2016.08.093.10.1016/j.cej.2016.08.093Open DOISearch in Google Scholar

3. Hethnawi, A., Nassar, N.N., Manasrah, A.D. & Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fi xed-bed column. J. Chem. Eng. 320, 389-404. DOI: 10.1016/j.cej.2017.03.057.10.1016/j.cej.2017.03.057Open DOISearch in Google Scholar

4. Bhatnagar, A., Sillanpää, M. & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purifi - cation-A review. J. Chem. Eng. 270, 244-271. DOI: 10.1016/j.cej.2015.01.135.10.1016/j.cej.2015.01.135Open DOISearch in Google Scholar

5. An astopoulos, I., Karamesouti, M., Mitropoulos, A.C. & Kyzas, G.Z. (2017). A review for coffee adsorbents. J. Mol. Liq. 229, 555-565. DOI: 10.1016/j.molliq.2016.12.096.10.1016/j.molliq.2016.12.096Open DOISearch in Google Scholar

6. Ca i, J., He,Y., Yu, X., Banks, S.W., Yang,Y., Zhang, X., Yu, Y., Liu, R. & Bridgwater, A.V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. J. Renew. Sust. Energ. Rev. 76, 309-322.DOI: 10.1016/j.rser.2017.03.072.10.1016/j.rser.2017.03.072Open DOISearch in Google Scholar

7. Um martyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. J. Renew. Sust. Energ. Rev. 62, 654-664. DOI: 10.1016/j.rser.2016.04.066.10.1016/j.rser.2016.04.066Open DOISearch in Google Scholar

8. Da i, Y., Zhang, D. & Zhang, K. (2016). Nitrobenzene- -adsorption capacity of NaOH-modifi ed spent coffee ground from aqueous solution. J. Taiwan Inst. Chem. Eng. 68, 232-238.DOI: 10.1016/j.jtice.2016.08.042.10.1016/j.jtice.2016.08.042Search in Google Scholar

9. Me ssaoudi, N.E., Khomri, M.E., Bentahar, S., Dbik, A., Lacherai, A. & Bakiz, B. (2016). Evaluation of performance of chemically treated date stones: Application for the removal of cationic dyes from aqueous solutions. J. Taiwan Inst. Chem. Eng. 67, 244-253. DOI: 10.1016/j.jtice.2016.07.024.10.1016/j.jtice.2016.07.024Open DOISearch in Google Scholar

10. Zhang, X.X., Shi, Q.Q., Ji, D., Niu, L.X., Zhang, Y.L. (2017). Determination of the phenolic content, profi le, and antioxidant activity of seeds from nine tree peony (Paeoniasection Mountan DC.) species native to China. Food Res. Int. 97, 141-148. DOI: 10.1016/j.foodres.2017.03018.10.1016/j.foodres.2017.03.018Search in Google Scholar

11. Ma, L., Cui,Y., Cai, R., Liu, X., Zhang, C. & Xiao, D. (2015). Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob. J. Bioresour. Technol. 180, 1-6. DOI: 10.1016/j.biortech.2014.12.078.10.1016/j.biortech.2014.12.07825585256Open DOISearch in Google Scholar

12. S un,Y.G., Ma,Y.L., Wang, L.Q., Wang, F.Z., Wu, Q.Q. & Pan, G.Y. (2015). Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. J. Carbohydr. Polym. 117, 486-493. DOI: 10.1016/j. carbpol.2014.09.066.10.1016/j.carbpol.2014.09.06625498662Open DOISearch in Google Scholar

13. M ohapatra, S., Dandapat, S.J. & Thatoi, H. (2017). Physicochemical characterization, modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp. using Taguchi and artifi cial neural networking for enhanced delignifi cation. J. Environ. Manage 187, 537-549. DOI: 10.1016/j.jenvman.2016.09.060.10.1016/j.jenvman.2016.09.06027865731Open DOISearch in Google Scholar

14. G andolfi , S., Ottolina, G., Consonni, R., Riva, S. & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatmen and its effect on production of lignin and sugars. J. ChemSusChem 7(7), 1991-1999. DOI: 10.1002/cssc.201301396.10.1002/cssc.20130139624753480Open DOISearch in Google Scholar

15. Hameed, B.H. & Ahmad, A.A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164(2-3), 870-875. DOI: 10.1016/j.jhazmat.2008.08.084.10.1016/j.jhazmat.2008.08.08418838221Open DOISearch in Google Scholar

16. B ulgariu, D. & Bulgariu, L. (2016). Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. J. Clean. Prod. 112(5), 4525-4533. DOI: 10.1016/j.jclepro.2015.05.124.10.1016/j.jclepro.2015.05.124Open DOISearch in Google Scholar

17. O oi, J., Lee, L.Y., Hiew, B.Y.Z., Thangalazhy-Gopakumar, S., Lim, S.S. & Gan, S. (2017). Assessment of fi sh scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. J. Bioresour. Technol. 245, 656-664. DOI: 10.1016/j.biortech.2017.08.153.10.1016/j.biortech.2017.08.15328917100Open DOISearch in Google Scholar

18. S ayyadi, S., Ahmady-Asbchin, S., Kamali, K. & Tavakoli, N. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb2+ from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. J. Taiwan Inst. Chem. Eng. 80, 701-708. DOI: 10.1016/j.jtice.2017.09.005.10.1016/j.jtice.2017.09.005Open DOISearch in Google Scholar

19. S arat Chandra, T., Mudliar, S.N., Vidyashankar, S., Mukherji, S., Sarada, R., Krishnamurthi, K. & Chauhan,V.S. (2015). Defatted algal biomass as a non-conventional low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. J. Bioresour. Technol. 184, 395-404. DOI: 10.1016/j.biortech.2014.10.018.10.1016/j.biortech.2014.10.01825479690Open DOISearch in Google Scholar

20. A lbadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for effi cient adsorption of methylene blue. J. Chem. Eng. 307, 264-272. DOI: 10.1016/j.cej.2016.08.089.10.1016/j.cej.2016.08.089Open DOISearch in Google Scholar

21. Z hang, H., Li, A., Sun, J. & Li, P. (2013). Adsorption of amphoteric aromatic compounds by hyper-cross-linked resins with amino groups and sulfonic groups. J. Chem. Eng. 217, 354-362. DOI: 10.1016/j.cej.2012.12.001.10.1016/j.cej.2012.12.001Open DOISearch in Google Scholar

22. K umari, S., Chauhan, G.S. & Ahn, J.H. (2016). Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. J. Chem. Eng. 304, 728-736. DOI: 10.1016/j.cej.2016.07.008.10.1016/j.cej.2016.07.008Open DOISearch in Google Scholar

23. D ai, H., Huang, Y. & Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. J. Carbohydr. Polym. 185, 1-11. DOI: 10.1016/j. carbpol.2017.12.073.10.1016/j.carbpol.2017.12.07329421044Open DOISearch in Google Scholar

24. S aini, J., Garg,V.K. & Gupta, R.K. (2018). Removal of Methylene Blue from aqueous solution by Fe3O4 @Ag/ SiO2 nanospheres: Synthesis, characterization and adsorption performance. J. Mol. Liq. 250, 413-422. DOI: 10.1016/j.molliq. 2017.11.180.10.1016/j.molliq.2017.11.180Open DOISearch in Google Scholar

25. C heng, M., Zeng, G., Huang, D., Lai, C., Liu,Y., Zhang, C., Wang, R., Qin, L., Xue,W., Song, B., Ye, S. & Yi, H. (2018). High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism. J. coll. Interf. Sci. 515, 232-239. DOI: 10.1016/j.jcis.2018.01.008.10.1016/j.jcis.2018.01.00829353196Open DOISearch in Google Scholar

26. G uo, H., Bi, C., Zeng, C., Ma,W., Yan, L., Li, K. & Wei, K. (2018). Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J. Mol. Liq. 249, 629-636. DOI: 10.1016/j.molliq.2017.11.096.10.1016/j.molliq.2017.11.096Open DOISearch in Google Scholar

27. E L.-Mekkawi, D.M., Selim, Mohamed M. & Ibrahim, Fatma A. (2018). Innovative synthesis of black zeolites-based kaolin and their adsorption behavior in the removal of methylene blue from water. J. Mater. Sci. 53(5), 3323-3331. DOI: 10.1007/s10853-017-1744-8.10.1007/s10853-017-1744-8Open DOISearch in Google Scholar

28. Z hao, Q., Zhu, X. & Chen, B. (2018). Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. J. Chem. Eng. 334, 1119-1127. DOI: 10.1016/j.cej.2017.11.053.10.1016/j.cej.2017.11.053Open DOISearch in Google Scholar

29. O lusegun, S.J., de Sousa Lima, L.F. & Mohallem, N.D.S. (2018). Enhancement of adsorption capacity of clay through spray drying and surface modification process for wastewater treatment. J. Chem. Eng. 334, 1719-1728. DOI: 10.1016/j.cej.2017.11.084.10.1016/j.cej.2017.11.084Open DOISearch in Google Scholar

30. L i, Z., Wang, G., Zhai, K., He, C., Li, Q. & Guo, P. (2018). Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. J. Colloid. Surface. A. 538, 28-35. DOI: 10.1016/j.colsurfa.2017.10.046.10.1016/j.colsurfa.2017.10.046Open DOISearch in Google Scholar

31. N asrullah, A., Bhat, A.H., Naeem, A., Isa, M.H. & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for effi cient removal of methylene blue. J. Int. Biol. Macromol. 107, 1792-1799. DOI: 10.1016/j.ijbiomac.2017.10.045.10.1016/j.ijbiomac.2017.10.04529032214Open DOISearch in Google Scholar

32. H an, R., Zhang, L., Song, C., Zhang, M., Zhu, H. & Zhang, L. (2010). Characterization of modifi ed wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. J. Carbohydr. Polym. 79(4), 1140-1149. DOI: 10.1016/j.carbpol.2009.10.054.10.1016/j.carbpol.2009.10.054Open DOISearch in Google Scholar

33. K onicki, W., Aleksandrzak, M., Moszynski, D. & Mijowska, E. (2017). Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Coll. Interf. Sci. 496, 188-200. DOI: 10.1016/j.jcis.2017.02.031.10.1016/j.jcis.2017.02.03128232292Open DOISearch in Google Scholar

34. P atra, S., Roy, E., Madhuri, R. & Sharma, P.K. (2016). Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes. J. Ind. Eng. Chem. 33, 226-238. DOI: 10.1016/j.jiec.2015.10.008.10.1016/j.jiec.2015.10.008Open DOISearch in Google Scholar

35. E sfandiyari, T., Nasirizadeh, N., Ehrampoosh, M.H. & Tabatabaee, M. (2017). Characterization and absorption studies of cationic dye on multi walled carbon nanotube-carbon ceramic composite. J. Ind. Eng. Chem. 46, 35-43. DOI: 10.1016/j.jiec.2016.09.031.10.1016/j.jiec.2016.09.031Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering