Open Access

H2 and Syngas Production From Catalytic Cracking of Pig Manure and Compost Pyrolysis Vapor Over Ni-Based Catalysts


Cite

1. Huang, G., Han, L., Yang, Z. & Wang, X. (2008). Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS). Bioresour. Technol. 99, 8164-8169. DOI: 10.1016/j.biortech.2008.03.025.10.1016/j.biortech.2008.03.025Open DOISearch in Google Scholar

2. Kim, M., Li, D., Choi, O., Sang, B.I., Chiang, P.C. & Kim, H. (2017). Effects of supplement additives on anaerobic biogas production. Korean J. Chem. Eng. 34, 2678-2685. DOI: 10.1007/s11814-017-0175-1.10.1007/s11814-017-0175-1Open DOISearch in Google Scholar

3. Cao, J.P., Huang, X., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2015). Nitrogen transformation during gasifi cation of livestock compost over transition metal and Ca-based catalysts. Fuel 140, 477-483. DOI: 10.1016/j.fuel.2014.10.008.10.1016/j.fuel.2014.10.008Open DOISearch in Google Scholar

4. Sweeten, J.M., Annamalai, K., Thien, B. & McDonald, L.A. (2003). Co-fi ring of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel 82, 1167-1182. DOI: 10.1016/S0016-2361(03)00007-3.10.1016/S0016-2361(03)00007-3Open DOISearch in Google Scholar

5. Li, L. & Takarada, T. (2013). Conversion of nitrogen compounds and tars obtained from pre-composted pig manure pyrolysis, over nickel loaded brown coal char. Biomass Bioenerg. 56, 456-463. DOI: 10.1016/j.biombioe.2013.05.028.10.1016/j.biombioe.2013.05.028Open DOISearch in Google Scholar

6. Ro, K.S., Cantrell, K., Elliott, D. & Hunt, P.G. (2007). Catalytic wet gasifi cation of municipal and animal wastes. Ind. Eng. Chem. Res. 46, 8839-8845. DOI: 10.1021/ie061403w.10.1021/ie061403wOpen DOISearch in Google Scholar

7. Liu, T.L., Cao, J.P., Zhao, X.Y., Wang, J.X., Ren, X.Y., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Process. Technol. 160, 19-26. DOI: 10.1016/j. fuproc.2017.02.012.10.1016/j.fuproc.2017.02.012Open DOISearch in Google Scholar

8. Huang, X., Cao, J.P., Zhao, X.Y., Wang, J.X., Fan, X., Zhao, Y.P. & Wei, X.Y. (2016). Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93-98. DOI: 10.1016/j.fuel.2015.12.011.10.1016/j.fuel.2015.12.011Search in Google Scholar

9. Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D. & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219-227. DOI: 10.1016/j.cej.2014.12.006.10.1016/j.cej.2014.12.006Open DOISearch in Google Scholar

10. Wang, J.X., Cao, J.P., Zhao, X.Y., Liu, T.L., Wei, F., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. J. Anal. Appl. Pyrol. 125, 279-288. DOI: 10.1016/j.jaap.2017.03.015.10.1016/j.jaap.2017.03.015Search in Google Scholar

11. Xu, G., Murakami, T., Suda, T., Matsuzaw, Y. & Tani, H. (2009). Two-stage dual fl uidized bed gasifi cation: Its conception and application to biomass. Fuel Process. Technol. 90, 137-144.DOI: 10.1016/j.fuproc.2008.08.007.10.1016/j.fuproc.2008.08.007Open DOISearch in Google Scholar

12. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Liu, T.L., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Preparation of high-dispersion Ni/C catalyst using modifi ed lignite as carbon precursor for catalytic reforming of biomass volatiles. Fuel 202, 345-351.DOI: 10.1016/j.fuel.2017.04.060.10.1016/j.fuel.2017.04.060Open DOISearch in Google Scholar

13. Ji, P.J., Feng, W. & Chen, B.H. (2009). Comprehensive simulation of an intensifi ed process for H2 production from steam gasifi cation of biomass. Ind. Eng. Chem. Res. 48, 3909-3920. DOI: 10.1021/ie801191g.10.1021/ie801191gOpen DOISearch in Google Scholar

14. Porada, S., Rozwadowski, A. & Zubek, K. Studies of catalytic coal gasifi cation with steam. Pol. J. Chem. Technol. 18, 97-102. DOI: 10.1515/pjct-2016-0054.10.1515/pjct-2016-0054Open DOISearch in Google Scholar

15. Ashok, J. & Kawi, S. (2014). Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catal. 4, 289-301. DOI: 10.1021/cs400621p.10.1021/cs400621pOpen DOISearch in Google Scholar

16. Karnjanakom, S., Guana, G.Q., Asep, B., Dua, X., Hao, X.G., Samart, C. & Abudula, A. (2015). Catalytic steam reforming of tar derived from steam gasifi cation of sunfl ower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Convers. Manage. 98, 359-368. DOI: 10.1016/j.enconman.2015.04.007.10.1016/j.enconman.2015.04.007Open DOISearch in Google Scholar

17. Li, S., Zhu, C., Guo, S.M. & Guo, L.J. (2015). A dispersed rutile-TiO2-supported Ni nanoparticle for enhanced gas production from catalytic hydrothermal gasifi cation of glucose. RSC Adv. 5, 81905-81914. DOI: 10.1016/j.enconman.2015.04.007.10.1016/j.enconman.2015.04.007Search in Google Scholar

18. Zhao, X.Y., Ren, J., Cao, J.P., Wei, F., Zhu, C., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore. Energy Fuels 31, 4054-4060. DOI: 10.1021/acs.energyfuels.7b00005.10.1021/acs.energyfuels.7b00005Open DOISearch in Google Scholar

19. Wang, J., Xiao, B., Liu, S., Hu, Z., He, P., Guo, D., Hu, M., Qi, F. & Luo, S. (2013). Catalytic steam gasifi cation of pig compost for hydrogen-rich gas production in a fi xed bed reactor. Bioresour. Technol. 133, 127-133. DOI: 10.1016/j. biortech.2013.01.092.10.1016/j.biortech.2013.01.092Open DOISearch in Google Scholar

20. Cao, J.P., Shi, P., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2014). Decomposition of NOx precursors during gasifi cation of wet and dried pig manures and their composts over Ni-based catalysts. Energy Fuels 28, 2041-2046. DOI: 10.1021/ef5001216.10.1021/ef5001216Open DOISearch in Google Scholar

21. Wang, B.S., Cao, J.P., Zhao, X.Y., Bian, Y., Song, C., Zhao, Y. P., Fan, X., Wei, X.Y. & Takarada, T. (2015). Preparation of nickel-loaded on lignite char for catalytic gasifi cation of biomass. Fuel Process. Technol. 136, 17-24. DOI: 10.1016/j.fuproc.2014.07.024.10.1016/j.fuproc.2014.07.024Open DOISearch in Google Scholar

22. Li, L., Morishita, K., Mogi, H., Yamasaki, K. & Takarada, T. (2010). Low-temperature gasifi cation of a woody biomass under a nickel-loaded brown coal char. Fuel Process. Technol. 91, 889-894. DOI: 10.1016/j.fuproc.2009.08.003.10.1016/j.fuproc.2009.08.003Open DOISearch in Google Scholar

23. Kahdum, B.J., Lafta, A. J. & Johdh, A.M. (2017). Enhancement photocatalytic activity of spinel oxide (Co, Ni)3O4 by combination with carbon nanotubes. Pol. J. Chem. Technol. 19, 61-67. DOI: 10.1515/pjct-2017-0050.10.1515/pjct-2017-0050Open DOISearch in Google Scholar

24. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Zhu, C. & Wei, X.Y. (2017). Extending catalyst lifetime by doping of Ce in Ni loaded on acid-washed lignite char for biomass catalytic gasifi cation. Catal. Sci.Technol. 7, 5741-5749. DOI: 10.1039/C7CY01670K.10.1039/C7CY01670Open DOISearch in Google Scholar

25. Zeng, Y., Ma H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2014). Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation. Pol. J. Chem. Technol. 16, 95-100. DOI: 10.2478/pjct-2014-0076.10.2478/pjct-2014-0076Open DOISearch in Google Scholar

26. Cao, J.P., Ren, J., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2018). Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound. Fuel, 217, 515-521. DOI: 10.1016/j.fuel.2017.12.121.10.1016/j.fuel.2017.12.121Open DOISearch in Google Scholar

27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguezreinoso, F., Rouquerol, J. & S.W. Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 25-25. DOI: 10.1515/pac-2014-1117.10.1515/pac-2014-1117Open DOISearch in Google Scholar

28. Donald, J., Xu, C., Hashimoto, H., Byambajav, E. & Ohtsuka, Y. (2010). Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere. Appl. Catal. A Gen. 375, 124-133. DOI: 10.1016/j.apcata.2009.12.030.10.1016/j.apcata.2009.12.030Open DOISearch in Google Scholar

29. Xua, C.C., Donald, J., Byambajav, E. & Ohtsuka, Y. (2010). Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasifi cation. Fuel 89, 1784-1795. DOI: 10.1016/j.apcata.2009.12.030.10.1016/j.apcata.2009.12.030Open DOISearch in Google Scholar

30. Sehested, J. (2006). Four challenges for nickel steamreforming catalysts. Catal. Today 111, 103-110. DOI: 10.1016/j. cattod.2005.10.002.10.1016/j.cattod.2005.10.002Open DOISearch in Google Scholar

31. Wu, C. & Williams, P.T. (2009). Hydrogen production by steam gasifi cation of polypropylene with various nickel catalysts. Appl. Catal. B Environ. 87, 152-161. DOI: 10.1016/j. apcatb.2008.09.003.10.1016/j.apcatb.2008.09.003Open DOISearch in Google Scholar

32. Alipour, Z., Rezaei, M. & Meshkani, F. (2014). Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activit and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem.20, 2858-2863. DOI: 10.1016/j.jiec.2013.11.018.10.1016/j.jiec.2013.11.018Open DOISearch in Google Scholar

33. Liu, J.J., Peng, H.G., Liu, W.M., Xu, X.L., Wang, X., Li, C.Q., Zhou, W.F., Yuan, P., Chen, X.H., Zhang, W.G. & Zhan, H.B. (2014). Tin modifi cation on Ni/Al2O3: designing potent coke-resistant catalysts for the dry reforming of methane. ChemCatChem. 6, 2095-2104. DOI: 10.1002/cctc.201402091.10.1002/cctc.201402091Open DOISearch in Google Scholar

34. Cao, J.P., Huang, X., Zhao, X.Y., Wang, B.S., Meesuk, S., Sato, K., Wei, X.Y. & Takarada, T. (2014). Low-temperature catalytic gasifi cation of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char. Int. J. Hydrogen Energ. 39, 9193-9199. DOI: 10.1016/j. ijhydene.2014.03.222.10.1016/j.ijhydene.2014.03.222Open DOISearch in Google Scholar

35. Shen, Y., Chen, M., Sun, T. & Jia, J. (2015). Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. Fuel 159, 570-579. DOI: 10.1016/j. fuel.2015.07.007.10.1016/j.fuel.2015.07.007Open DOISearch in Google Scholar

36. Tomita, A., Watanabe, Y., Takarada, T., Ohtsuka, Y. & Tamai, Y. (1985). Nickel-catalysed gasifi cation of brown coal in a fl uidized bed reactor at atmospheric pressure. Fuel 64, 795-800. DOI: 10.1016/0016-2361(85)90012-2.10.1016/0016-2361(85)90012-2Open DOISearch in Google Scholar

37. Martins, O. (1992). Loss of nitrogen compounds during composting of animal wastes. Bioresour. Technol. 42, 103-111. DOI: 10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.027Open DOISearch in Google Scholar

38. Bernal, M.P., Alburquerque, J.A. & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444-5453. DOI: 10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.027Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering