Open Access

Degradation of sertraline in water by suspended and supported TiO2


Cite

1. Richardson, M.L. & Bowron, J.M. (1985). The fate of pharmaceutical chemicals in the aquatic environment. J. Pharm. Pharmacol. 37(1), 1–12. DOI: 10.1111/j.2042-7158.1985.tb04922.x.10.1111/j.2042-7158.1985.tb04922.x2858520Open DOISearch in Google Scholar

2. Watts, C.D., Crathorne, M., Fielding, M. & Steel, C.P. (1983). In G. Angeletti & A. Bjørseth (Eds.), Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography (pp. 120–131). Dordrecht: Reidel Publishing Corporation.Search in Google Scholar

3. Bottoni, P. & Caroli, S. (2015). Detection and quantification of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review. J. Pharm. Biomed. Anal. 106, 3–24. DOI: 10.1016/j.jpba.2014.12.019.10.1016/j.jpba.2014.12.01925591909Open DOISearch in Google Scholar

4. Calisto, V. & Esteves, V.I. (2009). Psychiatric pharmaceuticals in the environment. Chemosphere 77(10), 1257–1274. DOI: 10.1016/j.chemosphere.2009.09.021.10.1016/j.chemosphere.2009.09.02119815251Search in Google Scholar

5. Tong, A.Y.C., Braund, R., Warren, D.S. & Peake, B.M. (2012). TiO2-assisted photodegradation of pharmaceuticals – a review. Cent. Eur. J. Chem. 10(4), 989–1027. DOI: 10.2478/s11532-012-0049-7.10.2478/s11532-012-0049-7Open DOISearch in Google Scholar

6. Fent, K., Weston, A.A. & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76(2), 122–159. DOI: 10.1016/j.aquatox.2005.09.009.10.1016/j.aquatox.2005.09.00916257063Open DOISearch in Google Scholar

7. Sanderson, H., Johnson D.J., Reitsma, T., Brain, R.A., Wilson, C.J. & Solomon, K.R. (2004). Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul. Toxicol. Pharm. 39(2), 158–183. DOI: 10.1016/j.yrtph.2003.12.006.10.1016/j.yrtph.2003.12.00615041147Open DOISearch in Google Scholar

8. Silva, L.J.G., Pereira, A.M.P.T., Meisel, L.M., Lino, C.M. & Pena, A. (2015). Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology. Environ. Pollut. 197, 127–143. DOI: 10.1016/j.envpol.2014.12.002.10.1016/j.envpol.2014.12.00225528447Search in Google Scholar

9. Khetan, S.K. & Collins, T.J. (2007). Human pharmaceuticals in the aquatic environment: A challenge to green chemistry. Chem. Rev. 107(6), 2319–2364. DOI: 10.1021/cr020441w.10.1021/cr020441w17530905Open DOISearch in Google Scholar

10. Vasquez, M.I., Lambrianides, A., Schneider, M., Kümmerer, K. & Fatta-Kassinos, D. (2014). Environmental side effects of pharmaceutical cocktails: What we know and what we should know. J. Hazard. Mater. 279, 169–189. DOI: 10.1016/j.jhazmat.2014.06.069.10.1016/j.jhazmat.2014.06.06925061892Search in Google Scholar

11. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.A., Prados-Joya, G. & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7), 1268–1287. DOI: 10.1016/j.chemosphere.2013.07.059.10.1016/j.chemosphere.2013.07.05924025536Open DOISearch in Google Scholar

12. Santoke, H., Song, W., Cooper, W.J. & Peake, B.M. (2012). Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. J. Hazard. Mater. 217–218, 382–390. DOI: 10.1016/j.jhazmat.2012.03.049.10.1016/j.jhazmat.2012.03.049Open DOISearch in Google Scholar

13. Jiang, J.Q., Zhou, Z. & Sharma, V.K. (2013). Occur-rence, transportation, monitoring and treatment of emerging micro-pollutants in waste water - A review from global views. Microchem. J. 110, 292–300. DOI: 10.1016/j.microc.2013.04.014.10.1016/j.microc.2013.04.014Open DOISearch in Google Scholar

14. Khraisheh, M., Kim, J., Campos, L., Al-Muhtaseb, A.H., Al-Hawari, A., Al Ghouti, M. & Walker, G.M. (2014). Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2-Coconut Shell Powder (TCNSP) composite. J. Ind. Eng. Chem. 20(3), 979–987. DOI: 10.1016/j.jiec.2013.06.032.10.1016/j.jiec.2013.06.032Open DOISearch in Google Scholar

15. Białk, A. & Stepnowski, P. (2012, April). Analityka pozostałości farmaceutyków w żywności i próbkach środowiskowych. Retrieved March 20, 2018, from http://www.labportal.pl/article/analityka-pozostalosci-farmaceutykow-w-zywnosci-i-probkachsrodowiskowychSearch in Google Scholar

16. Sosnowska, K., Styszko-Grochowiak, K. & Gołaś, J. (2009). Leki w środowisku – źródła, przemiany, zagrożenia. In Krakowska Konferencja Młodych Uczonych, 17–19 September 2009 (pp. 395–404). Kraków, Małopolskie, Poland: AGH University of Science and Technology.Search in Google Scholar

17. Szymniak, A. & Lach, J. (2012). Zagrożenie środowiska wodnego obecnością środków farmaceutycznych. Inżynieria i Ochrona Środowiska 15(3), 249–263.Search in Google Scholar

18. Ternes T.A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Wat. Res. 32(11), 3245–3260. DOI: 10.1016/S0043-1354(98)00099-2.10.1016/S0043-1354(98)00099-2Open DOISearch in Google Scholar

19. Kruszelnicka, I., Ginter-Kramarczyk, D., Zając, A. & Zembrzuska, J. (2015). Problematyka obecności Farmaceutyków w Ściekach. Wodociągi i Kanalizacja 5, 96–99.Search in Google Scholar

20. Evgenidou, E.N., Konstantinou, I.K. & Lambropoulou, D.A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 505, 905–926. DOI: 10.1016/j.scitotenv.2014.10.021.10.1016/j.scitotenv.2014.10.021Open DOISearch in Google Scholar

21. Hignite, C. & Azarno, D.L. (1977). Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci. 20(2), 337–342. DOI: 10.1016/0024-3205(77)90329-0.10.1016/0024-3205(77)90329-0Open DOISearch in Google Scholar

22. Rogers, I.H., Birtwell, I.K. & Kruzynski, G.M. (1986). Organic extractables in municipal wastewater Vancouver, British Columbia. Water Poll. Res. J. Can. 21, 187–204.10.2166/wqrj.1986.014Search in Google Scholar

23. Marciocha, D., Raszka, A. & Surmacz-Górska, J. (2009). Leki w środowisku. Sulfametoksazol i trymetoprim jako jedne z najczęściej wykrywanych chemioterapeutyków w środowisku wodnym. In III Ogólnopolski Kongres Inżynierii Środowiska, 13–17 September 2009 (pp. 145–156). Lublin, Poland: Lublin University of Technology.Search in Google Scholar

24. Felis, E., Miksch, K., Surmacz-Górska, J. & Ternes, T. (2005). Presence of pharmaceutics in wastewater from WWTP “Zabrze Śródmieście” in Poland. Arch. Ochr. Środow. 31(3), 49–58.Search in Google Scholar

25. Schultz, M.M., Painter, M.M., Bartell, S.E., Logue, A., Furlong, E.T., Werner, S.L. & Schoenfuss, H.L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fat-head minnows. Aquat. Toxicol. 104(12), 38–47. DOI: 10.1016/j.aquatox.2011.03.011.10.1016/j.aquatox.2011.03.01121536011Open DOISearch in Google Scholar

26. Lajeunesse, A., Gagnon, C., Gagné, F., Louis, S., Čejka, P. & Sauvé, S. (2011). Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment – Evidence of biological effects. Chemosphere 83(4), 564571. DOI: 10.1016/j.chemo-sphere.2010.12.026.Search in Google Scholar

27. Mąka, E., Wojtyniak, B. & Moskalewicz, B. (2012). In Wojtyniak B., Goryński, P. & Moskalewicz, B. (Eds.) Zaburzenia psychiczne i zaburzenia zachowania. Sytuacja zdrowotna ludności Polski i jej uwarunkowania (pp. 173–187). Warszawa: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny.Search in Google Scholar

28. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C: Photochem. Rev. 13(4), 247–262. DOI: 10.1016/j.jphotochemrev.2012.07.001.10.1016/j.jphotochemrev.2012.07.001Open DOISearch in Google Scholar

29. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73(2), 71–91. DOI: 10.1016/j.seppur.2010.03.021.10.1016/j.seppur.2010.03.021Open DOISearch in Google Scholar

30. Sillanpaa, M., Ncibi, M.C. & Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manage. 208, 56–76. DOI: 10.1016/j.jenvman.2017.12.009.10.1016/j.jenvman.2017.12.00929248788Open DOISearch in Google Scholar

31. Dewil, R, Mantzavinos, D., Poulios, I & Rodrigo, M.A. (2017). New perspectives for Advanced Oxidation Processes. J. Environ. Manage. 195(2), 93–99. DOI: 10.1016/j.jenvman.2017.04.010.10.1016/j.jenvman.2017.04.01028456288Open DOISearch in Google Scholar

32. Lee, S.Y. & Park, S.J. (2013). TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19(6), 1761–1769. DOI: 10.1016/j.jiec.2013.07.012.10.1016/j.jiec.2013.07.012Open DOISearch in Google Scholar

33. Ohtani, B. (2014). Revisiting the Original Works Related to Titania Photocatalysis: A Review of Papers in the Early Stage of Photocatalysis Studies. Electrochemistry 82(6), 414425. DOI: 10.5796/electrochemistry.82.414.10.5796/electrochemistry.82.414Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering