Open Access

Production of (R)-styrene oxide by recombinant whole-cell biocatalyst in aqueous and biphasic system

 and    | Jul 25, 2018

Cite

1. Hwang, S.H., Choi, C.Y. & Lee, E.Y. (2010). Bio- and chemo-catalytic preparations of chiral epoxides. J. Ind. Eng. Chem. 16, 1–6. DOI: 10.1016/j.jiec.2010.01.001.10.1016/j.jiec.2010.01.001Open DOISearch in Google Scholar

2. Choi, W.J. (2009). Biotechnological production of enantio-pure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biot. 84, 239–247. DOI: 10.1007/s00253-009-2110-9.10.1007/s00253-009-2110-9Open DOISearch in Google Scholar

3. Kamble, M.P. & Yadav, G.D. (2017). Biocatalytic resolution of (R,S)-styrene oxide using a novel epoxide hydrolase from red mung beans. Catal. Today DOI: 10.1016/j.cattod.2017.06.013.10.1016/j.cattod.2017.06.013Search in Google Scholar

4. Saini, P., Kumar, N., Wani, S.I., Sharma, S., Chimni, S.S. & Sareen, D. (2017). Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World J. Microb. Biot. 33, 82. DOI: 10.1007/s11274-017-2248-z.10.1007/s11274-017-2248-zOpen DOISearch in Google Scholar

5. Hu, D., Wang, R., Shi, X.L., Ye, H.H., Wu, Q., Wu, M.C. & Chu, J.J. (2016). Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. J. Biotech. 236, 152–58. DOI: 10.1016/j.jbiotec.2016.08.013.10.1016/j.jbiotec.2016.08.013Open DOISearch in Google Scholar

6. Chen, W.J., Lou, W.Y., Yu, C.Y., Wu, H., Zong M.H. & Smith, T.J. (2012). Use of hydrophilic ionic liquids in a two--phase system to improve Mung bean epoxide hydrolase-mediated asymmetric hydrolysis of styrene oxide. J. Biotech. 162, 183–90. DOI: 10.1016/j.jbiotec.2012.09.006.10.1016/j.jbiotec.2012.09.006Open DOISearch in Google Scholar

7. Pu, W., Cui, C., Guo, C. & Wu, Z.L. (2018). Characterization of two styrene monooxygenases from marine microbes. Enzyme Microb. Tech. 112, 29–34. DOI: 10.1016/j.enzmictec.2018.02.001.10.1016/j.enzmictec.2018.02.001Open DOISearch in Google Scholar

8. Wu, S.K., Li, A.T., Chin, Y.S. & Li, Z. (2013). Enantioselctive hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphinggomonas sp. HXN-200: Preparation of epoxides and vicinal diols in high ee and high concentration. Acs Catal. 3, 752–759. DOI: 10.1021/cs300804v.10.1021/cs300804vSearch in Google Scholar

9. Panke, S., Wubbolts, M.G., Schmid, A. & Witholt, B. (2000). Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69, 91–100. DOI: 10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X.10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-XOpen DOISearch in Google Scholar

10. Tischler, D., Groning, J.A.D., Kaschabek, S.R. & Schlo-mann, M. (2012). One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl. Biochem. Biotechnol. 167, 931–44. DOI: 10.1007/s12010-012-9659-y.10.1007/s12010-012-9659-ySearch in Google Scholar

11. Zhu, Q.Q., He, W.H., Kong, X.D., Fan, L.Q., Zhao, J., Li, S.X. & Xu, J. H. (2014). Heterologous over-expression of Vigna radiate epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl. Microbiol. Biot. 98, 207–218. DOI: 10.1007/s00253-013-4845-6.10.1007/s00253-013-4845-6Open DOISearch in Google Scholar

12. Hopmann, K.H., Hallberg, B.M. & Himo, F. (2005). Catalytic Mechanism of Limonene epoxide hydrolase, a theoretical study. J. Am. Chem. Soc. 127, 14339–14347. DOI: 10.1021/ja050940p.10.1021/ja050940pOpen DOISearch in Google Scholar

13. Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Hauer, B. & Schmid, R.D. (1999). A colorimetric assay suitable for screening epoxide hydrolase activity. Anal. Chim. Acta. 391, 345–351. DOI: 10.1016/S0003-2670(99)00216-0.10.1016/S0003-2670(99)00216-0Open DOISearch in Google Scholar

14. Ye, H.H., Hu, D., Shi, X. L., Wu, M.C., Deng, C. & Li, J. F. (2016). Directed modification of a novel epoxide hydrolase from Phaseolus vulgaris, to improve its enantioconvergence towards styrene epoxides. Catal. Commun. 87, 32–35. DOI: 10.1016/j.catcom.2016.08.036.10.1016/j.catcom.2016.08.036Open DOISearch in Google Scholar

15. Kong, X.D., Ma, Q., Zhou, J.H., Zeng, B.B. & Xu, J.H. (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-beta-blocker precursors. Angew Chem. Int. Edit. 53, 6641–6644. DOI: 10.1002/anie.201402653.10.1002/anie.20140265324841567Open DOISearch in Google Scholar

16. Saini, P., & Sareen, D. (2017). An overview on the enhancement of enantioselectivity and stability of microbial epoxide hydrolases. Mol. Biotech. 59, 1–19. DOI: 10.1007/s12033-017-9996-8.10.1007/s12033-017-9996-828271340Open DOISearch in Google Scholar

17. Woo, J.H., Kang, J.H., Kang, S., Hwang, Y.O. & Kim, S.J. (2009). Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl. Microbiol. Biot. 82, 873–81. DOI: 10.1007/s00253-008-1791-910.1007/s00253-008-1791-919083233Open DOISearch in Google Scholar

18. Reetz, M.T., Bocola, M., Wang, L.W., Sanchis, J., Cronin, A., Arand, M., Zou, J., Archelas, A., Bottalla, A.L. Naworyta, A. & Mowbray, S.L. (2009). Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc. 131, 7334–43. DOI: 10.1021/ja809673d.10.1021/ja809673d19469578Open DOISearch in Google Scholar

19. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.10.1016/j.enzmictec.2004.08.016Open DOISearch in Google Scholar

20. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.00310.1016/j.enzmictec.2011.08.00322142731Open DOISearch in Google Scholar

21. Woo, M.H., Kim, H.S. & Lee, E.Y. (2012). Development and characterization of recombinant whole cells expressing the soluble epoxide hydrolase of Danio rerio and its variant for enantioselective resolution of racemic styrene oxides. J. Ind. Eng. Chem. 18, 384–91. DOI: 10.1016/j.jiec.2011.11.110.10.1016/j.jiec.2011.11.110Open DOISearch in Google Scholar

22. Zhao, J., Chu, Y.Y., Li, A.T., Ju, X., Kong, X.D. & Pan, J. (2011). An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv. Synth. Catal. 353, 1510–18. DOI: 10.1002/adsc.201100031.10.1002/adsc.201100031Open DOISearch in Google Scholar

23. Pedragosa-Moreau, S., Morisseau, C., Zylber, J., Archelas, A., Baratti, J. & Furstoss, R. (1997). Microbial transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides, a mechanistic approach. J. Org. Chem. 61, 7402–07. DOI: 10.1002/chin.199710036.10.1002/chin.199710036Search in Google Scholar

24. Xue, F., Liu, Z.Q., Zou, S.P., Wan, N.W., Zhu, W.Y. & Zheng, Y.G. (2014). A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: Cloning, characterization and application. Process Biochem. 49, 409–417. DOI: 10.1016/j.procbio.2014.01.003.10.1016/j.procbio.2014.01.003Search in Google Scholar

25. Baldascini, H., Ganzeveld, K.J. & Janssen, D.B. (2001). Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquid-phase system. Biotechnol. Bioeng. 73, 44–54. DOI: 10.1002/1097-0290(20010405)73:13.0.CO.10.1002/1097-0290(20010405)73:13.0.Open DOISearch in Google Scholar

26. Hwang, S., Hyun, H., Lee, B., Park, Y., Lee, E.Y. & Choi, C. (2006). Purification and characterization of a recombinant Caulobacter crescentus epoxide hydrolase. Biotechnol. Bioproc. E. 11, 282–287. DOI: 10.1007/BF03026241.10.1007/BF03026241Open DOISearch in Google Scholar

27. Llanes, A. (1999). Stability of biocatalyst. Electron J. Biotech. 11, 220. DOI: 10.2225/vol2-issue1-fulltext-2.10.2225/vol2-issue1-fulltext-2Open DOISearch in Google Scholar

28. Sindy, E. & Claudia, B. (2013). Kinetic study of the colloidal and enzymatic stability of beta-galactosidase, for designing its encapsulation route through sol-gel route assisted by Triton X-100 surfactant. Biochem. Eng. J. 75, 32–38. DOI: 10.1016/j.bej.2013.03.010.10.1016/j.bej.2013.03.010Open DOISearch in Google Scholar

29. Rubingh, D.N. (1996).The influence of surfactants on enzyme activity. Curr. Opin. Colloid In. 1, 598–603. DOI: 10.1016/S1359-0294(96)80097-5.10.1016/S1359-0294(96)80097-5Open DOISearch in Google Scholar

30. Gong, P.F., Xu, J.H., Tang, Y.F. & Wu, H.Y. (2003). Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnol. Progr. 19, 652–654. DOI: 10.1021/bp020293v.10.1021/bp020293v12675611Open DOISearch in Google Scholar

31. Kim, S.W., Seo, W.T. & Park, Y.H. (1997). Enhanced synthesis of trisporic acid and β-carotene production in Blakeslea trispora by addition of a non-ionic surfactant, Span 20. J. Biosci. Bioeng. 84, 330–332. DOI: 10.1016/S0922-338X(97)89253-7.10.1016/S0922-338X(97)89253-7Open DOISearch in Google Scholar

32. Laane, C., Boeren, S., Vos, K. & Veeger, C. (2009). Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 102, 2–8. DOI: 10.1002/bit.260300112.10.1002/bit.260300112Open DOISearch in Google Scholar

33. Lee, E.Y. (2007). Enantioselective hydrolysis of epichlorohydrin in organic solvents using recombinant epoxide hydrolase. J. Ind. Eng. Chem. 13, 159–62.Search in Google Scholar

34. Choi, W.J., Lee, E.Y., Yoon, S.J., Yang, S.T. & Choi, C.Y. (1999). Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88, 339–41. DOI: 10.1016/S1389-1723(00)80022-5.10.1016/S1389-1723(00)80022-5Open DOISearch in Google Scholar

35. Liu, Z.Y., Michel, J., Wang, Z.S., Witholt, B. & Li, Z. (2006). Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron-Asymmetr. 17, 47–52. DOI: 10.1016/j.tetasy.2005.11.018.10.1016/j.tetasy.2005.11.018Open DOISearch in Google Scholar

36. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.10.1016/j.enzmictec.2004.08.016Open DOISearch in Google Scholar

37. Lee, S.J., Kim, H.S., Kim, S.J., Park, S., Kim, B.J. & Shuler, M.L. (2007). Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol. Lett. 29, 237–246. DOI: 10.1007/s10529-006-9222-4.10.1007/s10529-006-9222-417151961Open DOISearch in Google Scholar

38. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.003.10.1016/j.enzmictec.2011.08.00322142731Open DOISearch in Google Scholar

39. Kim, H.S., Lee, S.J., Lee, E.J., Hwang, J.W., Park, S., Kim, S.J. & Lee, E.Y. (2005). Cloning and characterization of a fish microsomal epoxide hydrolase of Danio rerio and application to kinetic resolution of racemic styrene oxide. J. Mol. Catal. B-Enzym. 37, 30–35. DOI: 10.1016/j.molcatb.2005.09.003.10.1016/j.molcatb.2005.09.003Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering