Open Access

Extraction of rubidium and cesium from brine solutions using a room temperature ionic liquid system containing 18-crown-6


Cite

1. Arnold, W.D., Crouse, D.J., & Brown, K.B. (1965). Solvent extraction of cesium (and rubidium) from ore liquors with substituted phenols. Industrial & Engineering Chemistry Process Design and Development 4(3), 249–254. DOI: 10.1021/i260015a002.10.1021/i260015a002Open DOISearch in Google Scholar

2. McDowell, W.J., Case, G.N., McDonough, J.A., & Bartsch, R.A. (1992). Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis (tert-butylbenzo)-21-crown-7. Anal. Chem. 64(23), 3013–3017. DOI: 10.1021/ac00047a024.10.1021/ac00047a024Open DOISearch in Google Scholar

3. Tsai, S.C., Wang, T.H., Li, M.H., Wei, Y.Y., & Teng, S.P. (2009). Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161(2), 854–861. DOI:10.1016/j.jhazmat.2008.04.044.10.1016/j.jhazmat.2008.04.044Open DOISearch in Google Scholar

4. Li, Z., Pranolo, Y., Zhu, Z., & Cheng, C.Y. (2017). Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy 171, 1–7. DOI: 10.1016/j.hydromet.2017.03.007.10.1016/j.hydromet.2017.03.007Open DOISearch in Google Scholar

5. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., & Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47(7), 2563–2571. DOI: 10.1016/j.watres.2013.02.014.10.1016/j.watres.2013.02.014Open DOISearch in Google Scholar

6. Wang, J., Che, D., & Qin, W. (2015). Extraction of rubidium by t-BAMBP in cyclohexane. Chinese J. Chem. Eng. 23(7), 1110–1113. DOI: 10.1016/j.cjche.2015.04.005.10.1016/j.cjche.2015.04.005Open DOISearch in Google Scholar

7. Yang, W.J., Liu, S. M., Li, Y.J., Huang, Y.J., & Luo, X.S. (2013). Process analysis of Rb+ and Cs+ adsorption from salt lake brine by ammonium molybdophosphate composite material. In Advanced Materials Research (Vol. 785, pp. 812–816). Trans Tech Publications. DOI: 10.4028/www.scientific.net/AMR.785-786.812.10.4028/www.scientific.net/AMR.785-786.812Open DOISearch in Google Scholar

8. Liu, S.M., Liu, H.H., Huang, Y.J., & Yang, W.J. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. T. Nonferr. Metal. Soc. 25(1), 329–334. DOI: 10.1016/S1003-6326(15)63608-1.10.1016/S1003-6326(15)63608-1Search in Google Scholar

9. Ali, S.M., Joshi, J.M., Deb, A.S., Boda, A., Shenoy, K.T., & Ghosh, S.K. (2014). Dual mode of extraction for Cs+ and Na+ ions with dicyclohexano-18-crown-6 and bis (2-propyloxy) calix [4] crown-6 in ionic liquids: density functional theoretical investigation. RSC Adv. 4(44), 22911–22925. DOI: 10.1039/C4RA02246G.10.1039/402246Open DOISearch in Google Scholar

10. Jianchen, W., Xiaowen, Z., & Chongli, S. (2005). Extracting Performance of Cesium by 25, 27-Bis (2-Propyloxy) Calix [4]-26, 28-Crown-6 (iPr-C[4]C-6) in n-octanol. Sep. Sci. Technol. 40(16), 3381-3392. DOI: 10.1080/0149639050042373010.1080/01496390500423730Search in Google Scholar

11. Visser, A.E., & Rogers, R.D. (2003). Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 171(1), 109–113. DOI: 10.1016/S0022-4596(02)00193-7.10.1016/S0022-4596(02)00193-7Open DOISearch in Google Scholar

12. Shi, C., Jia, Y., Zhang, C., Liu, H., & Jing, Y. (2015). Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate. Fusion Eng. Des. 90, 1–6. DOI: 10.1016/j.fusengdes.2014.09.021.10.1016/j.fusengdes.2014.09.021Open DOISearch in Google Scholar

13. Rogers, R.D. (2007). Materials science: reflections on ionic liquids. Nature 447(7147), 917–918. DOI: 10.1038/447917a.10.1038/447917a17581570Open DOISearch in Google Scholar

14. Rout, A., Venkatesan, K.A., Srinivasan, T.G., & Rao, P.V. (2011). Extraction and third phase formation behavior of Eu(III) IN CMPO-TBP extractants present in room temperature ionic liquid. Sep. Purif. Technol. 76(3), 238–243. DOI: 10.1016/j.seppur.2010.10.009.10.1016/j.seppur.2010.10.009Open DOISearch in Google Scholar

15. Han, J., Wang, Y., Chen, C., Kang, W., Liu, Y., Xu, K., & Ni, L. (2014). (Liquid+ liquid) equilibria and extraction capacity of (imidazolium ionic liquids+ potassium tartrate) aqueous two-phase systems. J. Mol. Liq. 193, 23–28. DOI: 10.1016/j.molliq.2013.12.022.10.1016/j.molliq.2013.12.022Open DOISearch in Google Scholar

16. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084. DOI: 10.1021/cr980032t.10.1021/cr980032t11849019Search in Google Scholar

17. Pandey, S. (2006). Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 556(1), 38–45. DOI: 10.1016/j.aca.2005.06.038.10.1016/j.aca.2005.06.03817723329Open DOISearch in Google Scholar

18. Shi, C., Duan, D., Jia, Y., & Jing, Y. (2014). A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 200, 191–195. DOI: 10.1016/j.molliq.2014.10.004.10.1016/j.molliq.2014.10.004Open DOISearch in Google Scholar

19. Shang-Qing, C.H.E.N., Meng-Xue, W.A. N.G., Long, L.I., Ya-Fei, G.U.O., Xiao-Ping, Y.U., & Tian-Long, D.E.N.G. (2017). Recovery of Rubidium and Cesium from Brines by Solvent Extraction. DEStech Transactions on Materials Science and Engineering, DOI: 10.12783/dtmse/icmsea/mce2017/10798.10.12783/dtmse/icmsea/mce2017/10798Search in Google Scholar

20. Luo, H., Dai, S., Bonnesen, P.V., Buchanan, A.C., Holbrey, J.D., Bridges, N.J., & Rogers, R.D. (2004). Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Anal. Chem. 76(11), 3078–3083. DOI: 10.1021/ac049949k.10.1021/ac049949k15167785Open DOISearch in Google Scholar

21. Dai, S., Ju, Y.H., & Barnes, C.E. (1999). Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc., Dalton Trans. (8), 1201-1202. DOI: 10.1039/A809672D.21/Search in Google Scholar

22. Visser, A.E., et al. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.10.1021/ic026302e12665350Open DOISearch in Google Scholar

22. Visser, A.E., Jensen, M.P., Laszak, I., Nash, K.L., Choppin, G.R., & Rogers, R.D. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.10.1021/ic026302eOpen DOISearch in Google Scholar

23. Zhang, N., Gao, D.L., Liu, M.M., & Deng, T.L. (2014). Rubidium and Cesium Recovery from Brine Resources. In Adv. Mater. Res. (Vol. 1015, pp. 417–420). Trans Tech Publications.10.4028/www.scientific.net/AMR.1015.417Search in Google Scholar

24. Horwitz, E.P., Dietz, M.L., & Fisher, D.E. (1990). Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solvent Extr. Ion Exc. 8(4–5), 557–572. DOI: 10.1080/07366299008918017.10.1080/07366299008918017Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering