Open Access

Use of carbon and aluminosilicate nanofillers in XNBR composites designed for protective materials against oils


Cite

1. Gołębiewski, J. (2004). Polymer nanocomposites. Structure, methods of preparation and properties. Przem. Chem. 83 (1), 15–20.Search in Google Scholar

2. Alexandre, M. & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28(1–2), 1–63. DOI: 10.1016/S0927-796X(00)00012-7.10.1016/S0927-796X(00)00012-7Open DOISearch in Google Scholar

3. Sadasivuni, K.K., Ponnamma, D., Thomas, S. & Grohens, Y. (2014). Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39(4), 749–780. DOI: 10.1016/j.progpolymsci.2013.08.003.10.1016/j.progpolymsci.2013.08.003Open DOISearch in Google Scholar

4. Stephen, R., Ranganathaiah, C., Varghese, S., Joseph, K. & Thomas, S. (2006). Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47, 858–870. DOI: 10.1016/j.polymer.2005.12.020.10.1016/j.polymer.2005.12.020Open DOISearch in Google Scholar

5. Ponnamma, D., Maria, H.J., Chandra, A.K. & Thomas, S.(2013). Rubber nanocomposites: latest trends and concepts. In book: Advances in Elastomers II Composites and Nano-composites, Chapter: Rubber Nanocomposites: Latest Trends and Concepts, Publisher: Springer, Editors: P. M. Visakh, Sabu Thomas, Arup K. Chandra, Aji. P. Mathew, 69–107. DOI: 10.1007/978-3-642-20928-4_3.10.1007/978-3-642-20928-4_3Open DOISearch in Google Scholar

6. Yaragalla, S., Sindam, B., Abraham, J., Raju, K.J., Kalarikkal, N. & Thomas, S. (2015). Fabrication of Graphite--Graphene- Ionic liquid Modified Carbon nanotubes filled Natural rubber thin Films for Microwave and Energy storage Applications. J. Polym. Research, 22(7), 1–10. DOI:10.1007/s10965-015-0776-5.10.1007/s10965-015-0776-5Open DOISearch in Google Scholar

7. Mao, Y., Wen, S., Chen, Y., Zhang, F., Panine, P., Chan, T.W., Zhang, L., Liang, Y. & Liu, L. (2013). High performance graphene oxide based rubber composites. Scientific Reports 3(2508). DOI:10.1038/srep02508.10.1038/srep02508375261023974435Open DOISearch in Google Scholar

8. Debelak, B. & Lafdi, K. (2007, May). Use of exfoliated graphite filler to enhance polymer physical properties [Full text]. Carbon. 45(9), 1727–1734. Retrieved April 10, 2014, from Science Direct: www.sciencedirect.com. DOI: 10.1016/j.carbon.2007.05.010.10.1016/j.carbon.2007.05.010Search in Google Scholar

9. Jang, B.Z. & Zhamu, A. (2008). Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–51013. DOI: 10.1007/s10853-008-2755-2.10.1007/s10853-008-2755-2Search in Google Scholar

10. Kang, H., Zuo, K., Wanga, Z., Zhang, L., Liu, L. & Guo, B. (2014, February). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance [Full Text]. Compos. Sci. Technol. 92(2014), 1–8. Retrieved September 10, 2017, from Science Direct: www.sciencedirect.com. DOI: 10.1016/j.compscitech.2013.12.004.10.1016/j.compscitech.2013.12.004Search in Google Scholar

11. Wang, J., Jia, H., Tang, Y., JI, D., Sun, Y. & Gong, X. (2013). Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J. Mater. Sci. 48(4), 1571–1577. DOİ:10.1007/s10853-012-6913-1.10.1007/s10853-012-6913-1Open DOISearch in Google Scholar

12. Barton, A.F.M. (1975). Solubility parameters. Chem. Rev. 75(6), 751–753.10.1021/cr60298a003Search in Google Scholar

13. Hansen, C.M. (2004). Aspects of solubility, surfaces and diffusion in polymers. Prog. Org. Coat. 51(1), 55–66. DOI: https://doi.org/10.1016/j.porgcoat.2004.05.002.10.1016/j.porgcoat.2004.05.002Open DOISearch in Google Scholar

14. Krzemińska, S., Irzmańska, E., Rzymski, W., Borkowska, U., Malesa, M. & Piłaciński, W. (2013). Polish Patent No. 219 209 B1. Warsaw: Patent Office of the Republic of Poland.Search in Google Scholar

15. Przybyszewska, M. & Zaborski, M. (2012). Polish Patent No. 210461. Warsaw: Patent Office of the Republic of Poland.Search in Google Scholar

16. Przepiórkowska, A. & Prochoń, M. (2013). Polish Patent No. 213 411 B1. Warsaw: Patent Office of the Republic of Poland.Search in Google Scholar

17. Krzemińska, S., Rzymski, W.M., Malesa, M., Borkowska, U. & Oleksy, M. (2016). Gloves against mineral oils and mechanical hazards. Int. J. Occup. Saf. Ergo. 22(3), 350–359. DOİ: 10.1080/10803548.2015.1136111.10.1080/10803548.2015.1136111496051226757889Open DOISearch in Google Scholar

18. Irzmańska, E. & Dyńska-Kukulska, K. (2012). Permeation of mineral oils through protective glove materials in view of literature data and authors’ own studies. Rev. Anal. Chem. 31(2), 113–122. DOI: 10.1515/REVAC.2011.121.10.1515/REVAC.2011.121Open DOISearch in Google Scholar

19. Krzemińska, S. & Rzymski, W.M. (2011). Barrier properties of hydrogenated acrylonitrile-butadiene rubber composites containing modified layered aluminosilicates. Mater. Sci-Poland. 29(4), 285–291. DOI: 10.2478/s13536-011-0046-0.10.2478/s13536-011-0046-0Open DOISearch in Google Scholar

20. Mooney, M.J. (1940). The Thermodynamics of a Strained Elastomer. I. General Analysis. J. Appl. Phys. 11(9), 582–92.Search in Google Scholar

21. Rivlin, R.S. (1947). Torsion of a rubber cylinde. J. Appl. Phys. 18, 444-449.10.1063/1.1697674Search in Google Scholar

22. Ju, H.M., Huh, S.H., Choi, S.H. & Lee, H.L. (2014). Structures of thermally and chemically reduced graphene. Mater. Lett. 64(3), 357–360. DOI: 10.1016/j.matlet.2009.11.016.10.1016/j.matlet.2009.11.016Open DOISearch in Google Scholar

23. Alanyalioğlu, M., Segura, J.J., Oró-solè, J. & Casañ-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon. 50(1), 142–152. DOI: 10.1016/j.carbon.2011.07.064.10.1016/j.carbon.2011.07.064Open DOISearch in Google Scholar

24. Aina, Z.N. & Azura, A.R. (2011). Effect of different types of filler and filler loadings on the properties of carboxylated acrylonitrile–butadiene rubber latex films. J. Appl. Polymer Sci. 119(5), 2815–2823. DOI: 10.1002/app.32984.10.1002/app.32984Open DOISearch in Google Scholar

25. George, S.C., Rajan, R., Aprem, A.S., Thomas, S. & Kim, S.S. (2016). The fabrication and properties of natural rubber-clay nanocomposites. Polymer Testing, 51, 165–173. DOİ: doi.org/10.1016/j.polymertesting.2016.03.010.10.1016/j.polymertesting.2016.03.010Open DOISearch in Google Scholar

26. Laskowska, A., Zaborski, M., Boiteux, G., Gain, O., Marzec, A. & Maniukiewicz, W. (2014). Ionic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite). eXPRESS Polymer Letters 8(6), 374–386. DOI: 10.3144/expresspolymlett.2014.4210.3144/expresspolymlett.2014.42Open DOISearch in Google Scholar

27. Satyanarayana, M.S, Bhowmick, A.K. & Kumar, K.D. (2016). Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polymer 99, 21–43. DOI: http://dx.doi.org/10.1016/j.polymer.2016.06.063.10.1016/j.polymer.2016.06.063Open DOISearch in Google Scholar

28. Wypych, G. (2004). Handbook of plasticizers. Chem Tec Publishing. 167.Search in Google Scholar

29. Lara, J., Zimmermann, F., Drolet, D., Hansen, C.M., Chollot, A. & Monta, N. (2017). The Use of the Hansen Solubility Parameters in the Selection of Protective Polymeric Materials Resistant to Chemicals. Int. J. Current Research 9(03), 47860–47867. HAL Id: hal-01639526.Search in Google Scholar

30. Varghese, H., Bhagawan, S.S. & Thomas, S. (1999). Effects of blend ratio, crosslinking systems and fillers on the morphology, curing behavior, mechanical properties, and failure mode of acrylonitrile butadiene rubber and poly(ethylene-co-vinyl acetate) blends. J. Appl. Polymer Sci. 71(14), 2335–2364. DOI: 10.1002/(SICI)10974628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5.10.1002/(SICI)10974628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5Open DOISearch in Google Scholar

31. Krzemińska, S., Rzymski, W., Smejda-Krzewicka, A., Lipińska, L., Woluntarski, M. & Oleksy, M. (2016). Patent Application No.P.419470. Warsaw: Patent Office of the Republic of Poland.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering