Open Access

Titania/mesoporous silica nanotubes with efficient photocatalytic properties


Cite

1. Carp, O., Huisman, C.L. & Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Solid State Chem. 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.10.1016/j.progsolidstchem.2004.08.001Open DOISearch in Google Scholar

2. Ma, Y. & Yao, J.N. (1998) Photodegradation of Rhodamine B catalyzed by TiO2 thin films. J. Photochem. Photobiol. A 116, 167–170. DOI: 10.1016/S1010-6030(98)00295-0.10.1016/S1010-6030(98)00295-0Open DOISearch in Google Scholar

3. Stylidi, M., Kondarides, D.I. & Verykios, X.E. (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40, 271–286. DOI: 10.1016/S0926-3373(02)00163-7.10.1016/S0926-3373(02)00163-7Open DOISearch in Google Scholar

4. Chen, D. & Ray, A.K. (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56, 1561–1570. DOI: 10.1016/S0009-2509(00)00383-3.10.1016/S0009-2509(00)00383-3Open DOISearch in Google Scholar

5. Khenniche, L., Favier, L., Bouzaza, A., Fourcade, F., Aissani, F. & Amrane, A. (2015) Photocatalytic degradation of bezacryl yellow in batch reactors–feasibility of the combination of photocatalysis and a biological treatment. Environ. Technol. 36(1), 1–10. DOI: 10.1080/09593330.2014.934740.10.1080/09593330.2014.934740Open DOISearch in Google Scholar

6. Favier, L., Ionut Simion, A., Rusu, L., Pacala, M.L., Grigoras, C. & Bouzaza, A. (2015) Removal of an Organic Refractory Compound by Photocatalysis in Batch Reactor-Kinetic Studies. Environ. Eng. Manag. J. 14(6), 1327–1338.10.30638/eemj.2015.144Search in Google Scholar

7. Favier, L., Simion, A.I., Matei, E., Grigoras, C.G., Kadmi, Y. & Bouzaza, A. (2016). Photocatalytic oxidation of a hazardous phenolic compound over TiO2 in a batch system. Environ. Eng. Manag. J. 15, 5, 1059–1067.10.30638/eemj.2016.117Search in Google Scholar

8. Kitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007) Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A. 325, 1–14. DOI: 10.1016/j.apcata.2007.03.013.10.1016/j.apcata.2007.03.013Search in Google Scholar

9. Fujishima, A., Zhang, X.T. & Tryk, D.A. (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582. DOI: 10.1016/j.surfrep.2008.10.001.10.1016/j.surfrep.2008.10.001Open DOISearch in Google Scholar

10. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science. 293, 269–271. DOI: 10.1126/science.1061051.10.1126/science.1061051Search in Google Scholar

11. Cendrowski, K., Chen, X., Zielinska, B., Kalenczuk, R.J., Rümmeli, M.H., Büchner, B.R., Klingeler & Borowiak-Palen, E. (2011) Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania J. Nanopart. Res. 11051/NANO, 307(13), 5899–5908. DOI: 10.1007/s11051-011-0307-1.10.1007/s11051-011-0307-1Open DOISearch in Google Scholar

12. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69–96. DOI: 10.1021/cr00033a004.10.1021/cr00033a004Open DOISearch in Google Scholar

13. Khan, S.U.M., Al-Shahry, M. & Ingler, W.B. (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 297, 2243–2245. DOI: 10.1126/science.1075035.10.1126/.1075035Open DOISearch in Google Scholar

14. Sikora, P., Augustyniak, A., Cendrowski, K., Horszczaruk, E., Rucinska, T., Nawrotek, P. & Mijowska, E. (2016) Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 9, 701, 1–16. DOI: 10.3390/ma9080701.10.3390/9080701Open DOISearch in Google Scholar

15. Vinodgopal, K., Wynkoop, D.E. & Kamat, P.V. (1996) Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 30(5), 1660–1666. DOI: 10.1021/es950655d.10.1021/es950655dOpen DOISearch in Google Scholar

16. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006) Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B. 110(9), 4066–4072. DOI: 10.1021/jp0564400.10.1021/jp0564400Open DOISearch in Google Scholar

17. Rao, K.V.S., Zhuo, B., Cox, J.M., Chiang, K., Brungs, M. & Amal, R. (2006) Photoinduced Bactericidal Properties of Nanocrystalline TiO2 Thin Films. J. Biomed. Nanotechnol. 2, 71–73. DOI: 10.1166/jbn.2006.006.10.1166/jbn.2006.006Open DOISearch in Google Scholar

18. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A: Chem. 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5.10.1016/S1010-6030(97)00038-5Open DOISearch in Google Scholar

19. Sunada, K., Kikuchi, Y., Hashimoto, K. & Fujishima, A. (1998) Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environ. Sci. Technol. 32, 726–728. DOI: 10.1021/es970860o.10.1021/es970860oOpen DOISearch in Google Scholar

20. Parkin, I.P. & Palgrave, R.G. (2005) Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695. DOI: 10.1039/B412803F10.1039/B412803Open DOISearch in Google Scholar

21. Fujishima, A., Rao, T.N. & Tryk, D.A. (2001) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.10.1016/S1389-5567(00)00002-2Open DOISearch in Google Scholar

22. Pitoniak, E., Wu, C.Y., Londeree, D., Mazyck, D., Bonzongo, J.C., Powers, K. & Sigmund, W. (2003) Nanostructured silica-gel doped with TiO2 for mercury vapor control. J. Nanopart. Res. 5, 281–292. DOI: 10.1023/A:1025582731470.10.1023/A:1025582731470Open DOISearch in Google Scholar

23. Wu, C.Y., Lee, T.G., Tyree, G., Arar, E. & Biswas, P. (1998) Capture of Mercury in Combustion Systems by In Situ–Generated Titania Particles with UV Irradiation. Environ. Eng. Sci. 15, 137–148. DOI: 10.1089/ees.1998.15.137.10.1089/ees.1998.15.137Open DOISearch in Google Scholar

24. Li, Y., Murphy, P. & Wu, C.Y. (2008) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Process. Technol. 89, 567–573. DOI: 10.1016/j.fuproc.2007.10.009.10.1016/j.fuproc.2007.10.009Open DOISearch in Google Scholar

25. Li, Y. & Wu, C.Y. (2007) Kinetic Study for Photocatalytic Oxidation of Elemental Mercury on a SiO2–TiO2 Nanocomposite. Environ. Eng. Sci. 24(1), 3–12. DOI: 10.1089/ees.2007.24.3.10.1089/ees.2007.24.3Open DOISearch in Google Scholar

26. Li, Y. & Wu, C.Y. (2006) Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Sci. Technol. 40(20), 6444–6448. DOI: 10.1021/es061228a.10.1021/es061228aOpen DOISearch in Google Scholar

27. Pitoniak, E., Wu, C.Y., Mazyck, D.W. & Powers, K.W. (2005) Adsorption Enhancement Mechanisms of Silica−Titania Nanocomposites for Elemental Mercury Vapor Removal. Environ. Sci. Technol. 39, 1269–1274. DOI: 10.1021/es049202b.10.1021/es049202bOpen DOISearch in Google Scholar

28. Huma, R.J., Michael, V.L., Li, Q. & Barron, A.R. (2011) Simple Route to Enhanced Photocatalytic Activity of P25 Titanium Dioxide Nanoparticles by Silica Addition. Environ. Sci. Technol. 45(4), 1563–1568. DOI: 10.1021/es102749e.10.1021/es102749eOpen DOISearch in Google Scholar

29. Fox, M.A. & Dulay, M.T. (1993) Heterogeneous photocatalysis. Chem. Rev. 93, 341–357. DOI: 10.1021/cr00017a016.10.1021/cr00017a016Open DOISearch in Google Scholar

30. Augustyniak, A., Cendrowski, K., Nawrotek, P., Barylak, M. & Mijowska. E. (2016) Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water, Air, & Soil Pollut. 227, 230, 1–13. DOI: 10.1007/s11270-016-2922-z.10.1007/s11270-016-2922-zOpen DOISearch in Google Scholar

31. Cendrowski, K., Sikora, P., Horszczaruk, E. & Mijowska, E. (2017) Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol-ammonium solution. Chem. Papers 71, 841–848. DOI: 10.1007/s11696-016-0099-y.10.1007/s11696-016-0099-yOpen DOISearch in Google Scholar

32. Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E. & Mijowska, E. (2017) Chemical and thermal stability of the core-shelled magnetite nanoparticles with solid silica. Appl. Surf. Sci. 407, 391–397. DOI: 10.1016/j.apsusc.2017.02.118.10.1016/j.apsusc.2017.02.118Open DOISearch in Google Scholar

33. Sikora, P., Cendrowski, K., Markowska-Szczupak, A., Horszczaruk, E. & Mijowska, E. (2017) The effects of silica/ titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Constr. Build. Mater. 150, 738–746. DOI: 10.1016/j.conbuildmat.2017.06.054.10.1016/j.conbuildmat.2017.06.054Open DOISearch in Google Scholar

34. Machinda, M., Norimoto, W.K. & Kimura, T. (2005) Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware. J. Am. Ceram. Soc. 88(1), 95–100. DOI: 10.1111/j.1551-2916.2004.00006.x.10.1111/j.1551-2916.2004.00006.xOpen DOISearch in Google Scholar

35. Paulo, S.O.C., Vidal, M. & Ferreir, L.S. (2010) Antifungal Nanoparticles and Surfaces. Biomacromolecules 11, 2810–2817. DOI: 10.1021/bm100893r.10.1021/bm100893rOpen DOISearch in Google Scholar

38. Li, M., Hong, Z., Fang, Y. & Huang, F. (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater. Res. Bull. 43, 2179–2186. DOI: 10.1016/j.materresbull.2007.08.030.10.1016/j.materresbull.2007.08.030Open DOISearch in Google Scholar

39. Cendrowski, K., Peruzynska, M., Markowska-Szczupak, A., Chen, X., Wajda, A., Lapczuk, J., Kurzawski, M., Kalenczuk, R.J., Drozdzik, M. & Mijowska, E. (2014) Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomed Microdevices. 16 (3), 449–458. DOI: 10.1007/s10544-014-9847-3.10.1007/s10544-014-9847-3Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering