Cite

1. Pan M., Jamaliniya S., Smith R., Bulatov I. & Goughb M., Higleyb T. & Droegemuellerb P. (2013). New insights to implement heat transfer intensification for shell and tube heat exchangers. Energy 57(8), 208–221. DOI: 10.1016/j.energy.2013.01.017.10.1016/j.energy.2013.01.017Search in Google Scholar

2. Sanaye, S. & Hajabdollahi, H. (2010). Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Enginee. 30(14), 1937–1945. DOI: 10.1016/j.applthermaleng.2010.04.018.10.1016/j.applthermaleng.2010.04.018Open DOISearch in Google Scholar

3. Ozden, E. & Tari, I. (2010). Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conver. Managem. 51(5), 1004–1014. DOI: 10.1016/j.enconman.2009.12.003.10.1016/j.enconman.2009.12.003Open DOISearch in Google Scholar

4. Hosseini, R., Hosseini-Ghaffar, A. & Soltani M. (2007). Experimental determination of shell side heat transfer coefficient and pressure drop for an oil cooler shell-and-tube heat exchanger with three different tube bundles. Appl. Therm. Enginee. 27(5–6), 1001–1008. DOI: 10.1016/j.applthermaleng.2006.07.023.10.1016/j.applthermaleng.2006.07.023Open DOISearch in Google Scholar

5. Pacio, J.C. & Dorao, C.A. (2010). A study of the effect of flow maldistribution on heat transfer performance in evaporators. Nuc. Enginee. Design 240(11), 3868–3877. DOI: 10.1016/j.nucengdes.2010.09.004.10.1016/j.nucengdes.2010.09.004Open DOISearch in Google Scholar

6. Mohr, U. & Gelbe, H. (2000). Velocity distribution and vibration excitation in tube bundle heat exchangers. Int. J. Therm. Sci. 39(3), 414–421. DOI: 10.1016/S1290-0729(00)00214-3.10.1016/S1290-0729(00)00214-3Open DOISearch in Google Scholar

7. Kim, M.I., Lee, Y., Kim B.W., Lee, D.H. & Song W.S. (2009). CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes. Korean J. Chem. Enginee. 26(2), 359–363. DOI: 10.1007/s11814-009-0060-7.10.1007/s11814-009-0060-7Open DOISearch in Google Scholar

8. Wang, K., Tu, X.C., Bae, C.H. & Kim, H.B. (2015). Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger. Int. J. Heat Mass Trans. 80, 865–872. DOI: 10.1016/j.ijheatmasstransfer.2014.09.076.10.1016/j.ijheatmasstransfer.2014.09.076Search in Google Scholar

9. Wang, K., Tu, X.C. & Kim, H.B. CFD simulation and PIV measurement of a shell and tube heat exchanger. The 9th Pacific Symposium on Flow Visualization and Image Processing, 25–28 August 2013. Busan, Korea.Search in Google Scholar

10. Wang S., Wen, J. & Li, Y. (2009). An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. App. Therm. Enginee. 29(11–12), 2433–2438. DOI: 10.1016/j.applthermaleng.2008.12.008.10.1016/j.applthermaleng.2008.12.008Search in Google Scholar

11. Lalot, S., Florent, P., Lang, S.K. & Bergles, A.E. (1999). Flow maldistribution in heat exchangers. Appl. Therm. Enginee. 19(8), 847–863. DOI: 10.1016/S1359-4311(98)00090-8.10.1016/S1359-4311(98)00090-8Search in Google Scholar

12. Jiao, A., Zhang, R. & Jeong, S. (2003). Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger. Appl. Therm. Enginee. 23(10), 1235–1246. DOI: 10.1016/S1359-4311(03)00057-7.10.1016/S1359-4311(03)00057-7Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering