Open Access

Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration


Cite

1. Akpa, J.G. (2012). Simulation of an Isothermal Catalytic Membrane Reactor for the Dehydrogenation of Ethylbenzene, Chem. Proc. Enginee. Res. 3, 14–28, ISSN 2225–0913.Search in Google Scholar

2. Arno Behr. (2017). Styrene production from ethyl benzene, Retrieved July 13, 2017 from (http://www.tc.bci.tu-dortmund.de/Downloads/Praktika/tc30_styrene_english.pdf.Search in Google Scholar

3. Hermann, Ch., Quicker, E. & Dittmeyer, R. (1997). Mathematical simulation of catalytic dehydrogenation of ethylbenzene. J. Memb. Sci. 136, 161–172. DOI: 10.1016/S0376-7388(97)81990-4.10.1016/S0376-7388(97)81990-4Open DOISearch in Google Scholar

4. PRWeb, World Styrene Market Dynamics Reviewed. Retrieved July, 13, 2017, from http://www.prweb.com/releases/2012/9/prweb9930130.htm.Search in Google Scholar

5. PRLog, Styrene Global Markets to 2020. Retrieved July, 13, 2017, from http://www.prlog.org/11727607-styrene-globalmarkets-to-2020-substitution-of-polystyrene-by-polypropylene.Search in Google Scholar

6. Snyder, J.D. & Subramaniam, B. (1994). Novel Reverse Flow Strategy for Ethylbenzene Dehydrogenation in A Packed bed Reactor. Chem. Enginee. Sci. 49(24), 5565–5601. DOI: 10.1016/0009-2509(94)00287-8.10.1016/0009-2509(94)00287-8Open DOISearch in Google Scholar

7. Haynes, T.N., Georgakis, C. & Caram, H.S. (1992). The Application of Reverse Flow Reactors to Endothermic Reactions. Chem. Enginee. Sci. 47(9–11), 2927–2932. DOI: 10.1016/0009-2509(92)87153-H.10.1016/0009-2509(92)87153-Open DOISearch in Google Scholar

8. Abdalla, B.K., Elnashaie, S.S.E.H., Alkhowaiter, S. & Elshishini, S.S. (1994). Intrinsic kinetics and industrial reactors modelling for the dehydrogenation of ethylbenzene to styrene on promoted iron oxide catalysts. Appl. Catal. A: General 113, 89–102. DOI: 10.1016/0926-860X(94)80243-2.10.1016/0926-860X(94)80243-2Search in Google Scholar

9. Hossain, M.M., Atanda, L., Al-Yassir, N., Al-Khattaf, S. (2012). Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst. Chem. Enginee. J. 207–208, 308–321. DOI: 10.1016/j.cej.2012.06.108.10.1016/j.cej.2012.06.108Open DOISearch in Google Scholar

10. Tamsilian, Y., Ebrahimi, A.N., Ramazani, S.A. & Abdollahzadeh, H. (2012). Modeling and sensitivity analysis of styrene monomer production process and investigation of catalyst behavior. Comp. Chem. Enginee. 40, 1–11. DOI: 10.1016/j.compchemeng.2012.01.014.10.1016/j.compchemeng.2012.01.014Search in Google Scholar

11. Zarubina, V. (2015). Oxidative dehydrogenation of ethylbenzene under industrially relevant conditions: on the role of catalyst structure and texture on selectivity and stability. PhD Thesis, University of Groningen, Netherland.Search in Google Scholar

12. Lee, W.J. (2005). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. PhD Thesis, Texas A&M.Search in Google Scholar

13. Nederlof, C. (2012). Catalytic dehydrogenations of ethylbenzene to styrene. PhD thesis, University of Delft, Netherland.Search in Google Scholar

14. Park, S.E. & Chang, J.S. (2004). Novel Process for Styrene from Ethylbenzene with Carbon Dioxide. 227th National Meeting of the American-Chemical Society, MAR 28-APR 01, 2004 (pp U1076-U1076), Anaheim, CA, USA. ISSN: 0065-7727.Search in Google Scholar

15. Mimura, N. & Saito, M. (2000a). Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catal. Today 55, 173–178. DOI: 10.1016/S0920-5861(99)00236-9.10.1016/S0920-5861(99)00236-9Open DOISearch in Google Scholar

16. Mimura, N. & Saito, M. (200b). Dehydrogenation of ethylbenzene to styrene in the presence of CO2. Appl. Organometal. Chem. 14, 773–777. DOI: 10.1002/1099-0739(200012)1410.1002/1099-0739(200012)14Open DOISearch in Google Scholar

17. Cavani, F. & Trifiro, F. (1995). Alternative Processes for the Production of Styrene. Appl. Catal. A, 133, 219–239.DOI: 10.1016/0926-860X(95)00218-9.10.1016/0926-860X(95)00218-9Open DOISearch in Google Scholar

18. Mimura, N., Takahara, I., Saito, M., Hattori, T., Ohkuma, K. & Ando, M. (1998). Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catal. Today 45, 60–64. DOI: 10.1016/S0920-5861(98)00246-6.10.1016/S0920-5861(98)00246-6Open DOISearch in Google Scholar

19. Abdalla, B.K., Elnashaie, S.S. E.H. (1994). Catalytic Dehydrogenation of Ethylbenzene to Styrene in Membrane Reactors. AIChE 40(12), 2055–2059. DOI: 10.1002/aic.690401215.10.1002/aic.690401215Open DOISearch in Google Scholar

20. Vaezi, M.J., Babaluo, A.A. & Shafiei, S. (2015). Modeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane. J. Chem. Petrol. Enginee. 49(1), 51–62. ISSN: 2423–6721.Search in Google Scholar

21. Gundersen, T. (2017). Chapter 2.1 in Handbook of Process Integration Heat Integration -Targets and Heat Exchanger Network Design, Retrieved July, 7, 2017. http://www.ivt.ntnu.no/ept/fag/tep4215/innhold/Handbook%20of%20PI%20-%20Chapter%202-1.pdf.Search in Google Scholar

22. Yoon, S.G. Lee, J. & Park, S. (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Ther. Enginee. 27, 886–893. DOI: 10.1016/j.applthermaleng.2006.09.001.10.1016/j.applthermaleng.2006.09.001Open DOISearch in Google Scholar

23. Carra. S. & Fomi. L. (1965). Kinetics of Catalytic Dehydrogenation of Ethylbenzene to Styrene. Engng. Chem. Proc. Des. Dev. 4, 281–285. DOI: 10.1021/i260015a009.10.1021/i260015a009Open DOISearch in Google Scholar

24. Modell, D.J. (1972). Optimization theory and applications: optimum temperature simulation of the styrene monomer reaction. Chem. Enginee. Comput. Vol. 1. AIChE, New York.Search in Google Scholar

25. Lee, W.J. & Froment, G.F. (2008). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. Ind. Eng. Chem. Res. 47, 9183–9194. DOI: 10.1021/ie071098u.10.1021/ie071098uOpen DOISearch in Google Scholar

26. James, D.H. & Castor, W.M. (1994). Ullmann’s encyclopedia of industrial chemistry. Wiley. Vol. 25, 5th ed., p. 329.Search in Google Scholar

27. Styrene Production, Retrieved July, 13, 2017. http://cbe.statler.wvu.edu/files/d/cd80e618-6d29-41a9-a854-275a995ed6cf/styrene12.pdf.Search in Google Scholar

28. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA.Search in Google Scholar

29. Smith, J.M., Van Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics, 6th edition, McGraw Hills, USA.Search in Google Scholar

30. Wall, G. (2011). Life Cycle Exergy Analysis of Renewable Energy System. Renew. Energy J. 4, 72–77. DOI: 10.2174/1876387101004010072.10.2174/1876387101004010072Open DOISearch in Google Scholar

31. Martinaitis, V., Streckiene, G., Biekša, D. & Bielskus, J. (2016). The exergy efficiency assessment of heat recovery exchanger for air handling units, using a state property – Coenthalpy. Appl. Therm. Enginee. 108, 388–397. DOI: 10.1016/j.applthermaleng.2016.07.118.10.1016/j.applthermaleng.2016.07.118Open DOISearch in Google Scholar

32. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX.Search in Google Scholar

33. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. ISSN: 0263-8762.Search in Google Scholar

34. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comput. Chem. Enginee. 12(6), 503–530. DOI: 10.1016/0890-4332(90)90084-W.10.1016/0890-4332(90)90084-Open DOISearch in Google Scholar

35. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York.Search in Google Scholar

36. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA.10.1016/B978-1-85617-744-3.00001-1Search in Google Scholar

37. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, USA.10.1533/9780857097255Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering