Open Access

Preparation and properties of nanocrystalline Ni/graphene composite coatings deposited by electrochemical method


Cite

1. Wasekar, N.P. et al. (2016). Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Sur. & Coat. Technol.291, 130–140. DOI: 10.1016/j.surfcoat.2016.02.024.10.1016/j.surfcoat.2016.02.024Open DOISearch in Google Scholar

2. Jiang, S.W. et al. (2016). Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants. Surf. & Coat. Technol. 286, 197–205. DOI: 10.1016/j.surfcoat.2015.12.028.10.1016/j.surfcoat.2015.12.028Open DOISearch in Google Scholar

3. Trzaska, M. & Cieślak, G. (2014). The structure and properties of nanocrystalline Ni/Al2O3 layers produced by electrocrystallization. Composites Theory and Practice 4, 203–207.Search in Google Scholar

4. Góral, A., Berent, K., Nowak, M. & Kania, B. (2016). Microstructure and properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities. Arch. Metall. Mater. 61, 55–60. DOI: 10.1515/amm-2016-0001.10.1515/amm-2016-0001Open DOISearch in Google Scholar

5. Low, C.T.J. et al. (2010). Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanates. Surf. & Coat. Technol. 205, 1856–1863. DOI: 10.1016/j.surfcoat.2010.08.054.10.1016/j.surfcoat.2010.08.054Open DOISearch in Google Scholar

6. Khalil, M.W. et al. (2015). Electrodeposition of Ni-GNS-TiO2 nanocomposite coatings as anticorrosion film for mild steel in neutral environment. Surf. & Coat. Technol. 275, 98–111. DOI: 10.1016/j.surfcoat.2015.05.03310.1016/j.surfcoat.2015.05.033Open DOISearch in Google Scholar

7. Szeptycka, B., Gajewska-Midziałek, A. & Babul, T. (2016). Electrodeposition and corrosion resistance of Ni-graphene composite coatings. J. Mater. Engine. Perfor. 25, 3134–3138. DOI: 10.1007/s11665-016-2009-4.10.1007/s11665-016-2009-4Open DOISearch in Google Scholar

8. Kumar, C.M.P. et al. (2013). Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater.Res. Bull. 48, 1477–1483. DOI: 10.1016/j.materresbull.2012.12.064.10.1016/j.materresbull.2012.12.064Search in Google Scholar

9. Chen, J. et al. (2016). Preparation and tribological behavior of Ni-graphene composite coating under room temperature. Appl. Surf. Sci. 361, 49–56. DOI: 10.1016/j.apsusc.2015.11.094.10.1016/j.apsusc.2015.11.094Open DOISearch in Google Scholar

10. Cieślak, G. & Trzaska, M. (2016). Tribological properties of nanocomposite Ni/graphene coatings produced by electrochemical reduction method. Composites: Theory and Practice 2, 79–83.Search in Google Scholar

11. Buczko, Z. et al. (2016). Electrochemical copper composite coatings with Graphene as a dispersion phase. Inżynieria Powierzchni (Surface Engineering) 1, 56–61.10.15199/28.2016.6.5Search in Google Scholar

12. Cieślak, G., Mazurek, A. & Trzaska, M. (2015). Composite layers of Ni/graphene produced by electrochemical reduction method. Inżynieria Powierzchni (Surface Engineering), 3, 44–47 (in Polish).Search in Google Scholar

13. Oleszak, D. & Olszyna, A. (2004). Crystallite size and lattice strain determination of Nial-Al2O3 nanocomposite from x-ray diffraction line broadening. Composites: Theory and Practice 4, 284–288 (in Polish).Search in Google Scholar

14. Cheap Tubes Inc. Retrieved June, 2017, from https://www.cheaptubes.com.Search in Google Scholar

15. Dong, L.X. & Chen, Q. (2010). Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4 (1), 45–51. DOI: 10.1007/s11706-010-0014-3.10.1007/s11706-010-0014-3Open DOISearch in Google Scholar

16. Ferrari, A.C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.10.1016/j.ssc.2007.03.052Open DOISearch in Google Scholar

17. Szczygieł, B. (1999). Studium nad otrzymywaniem i właściwościami elektrolitycznych warstw dyspersyjnych niklu z węglikiem krzemu. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).Search in Google Scholar

18. Łągiewka, E. & Budniok, A. (2010). Struktura, właściwości i metody badań materiałów otrzymanych elektrolitycznie. Katowice, Wydawnictwo Uniwersytetu Śląskiego (in Polish).Search in Google Scholar

19. Hovestad, A. & Janssen, L.J. (1995). Electrochemical codeposition of inert particles in a metallic matrix. J. Appl. Electrochem. 25, 519–527. DOI: 10.1007/BF00573209.10.1007/BF00573209Open DOISearch in Google Scholar

20. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669, DOI: 10.1126/science.1102896.10.1126/.1102896Open DOISearch in Google Scholar

21. Chronowska-Przywara, K. & Kot, M. (2014). Effect of scratch test parameters on the deformation and fracture of coating-substrate systems (in Polish). Tribologia 2, 19–29.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering