Open Access

Experimental analysis of gas hold-up for gas-liquid system agitated in a vessel equipped with two impellers and vertical tubular baffles


Cite

1. John, A.H., Bujalski, W. & Nienow, A.W. (1997). A novel reactor with independently-driven dual impellers for gas-liquid processing. Recents Progr. Genie Proced. 11, 5, 169–176.Search in Google Scholar

2. Bouaifi, M., Hebrard, G., Bastoul, D. & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chem. Eng. Proc., 40, 97–111. DOI: 10.1016/S0255-2701(00)00129-X.10.1016/S0255-2701(00)00129-XOpen DOISearch in Google Scholar

3. Majirova, H., Pinelli, D., Machon, Y. & Magelli, F. (2003). Gas flow behavior in a two-phase sparged reactor stirred with multiple turbines. 11th European Conference on Mixing, 14–17 October 2003 (pp. 245–252), Bamberg.Search in Google Scholar

4. Moucha, T., Linek, V. & Prokopova, E. (2003). Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci., 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.10.1016/S0009-2509(02)00682-6Open DOISearch in Google Scholar

5. Pinelli, D., Bakker, A., Myers, K.J., Reeder, M.F., Fasano, J. & Magelli, F. (2003). Some features of a novel gas dispersion impeller in a dual-impeller configuration. Trans IChemE, 81, 448–454.10.1205/026387603765173709Search in Google Scholar

6. Karcz, J., Siciarz, R. & Bielka, I. (2004). Gas hold-up in a reactor with dual system of impellers. Chem. Pap., 58(6), 404–409.Search in Google Scholar

7. Fujasova, M., Linek, V., Moucha, T. & Prokopova, E. (2004). Energy demands of different types in gas-liquid dispersions. Sep. Purif. Technol. 39, 123–131. DOI: 10.1016/j.seppur.2003.12.015.10.1016/j.seppur.2003.12.015Open DOISearch in Google Scholar

8. Shewale, S.D. & Pandit, A.B. (2006). Studies in multiple impeller agitated gas-liquid contactors. Chem. Eng. Sci., 61, 489–504. DOI: 10.1016/j.ces.2005.04.078.10.1016/j.ces.2005.04.078Search in Google Scholar

9. Bao, Y., Yang, J., Chen, L. & Gao, Z. (2012). Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Ind. Eng. Chem. Res., 51, 12411– –12420. DOI: 10.1021/ie301150b.10.1021/ie301150bOpen DOISearch in Google Scholar

10. Bao, Y., Wang, B., Lin, M., Gao, Z. & Yang, J. (2015). Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank. Chin. J. Chem. Engineer. 23, 890–896. DOI: 10.1016/j.cjche.2014.11.030.10.1016/j.cjche.2014.11.030Search in Google Scholar

11. Cudak, M., Kiełbus-Rąpała, A., Major-Godlewska, M. & Karcz, J. (2016). Influence of different factors on momentum transfer in mechanically agitated multiphase systems. Chem. Process. Eng. 37(1), 41–53. DOI: 10.1515/cpe-2016-0005.10.1515/cpe-2016-0005Open DOISearch in Google Scholar

12. Cabaret, F., Fradette, L. & Tanguy, P.A. (2008). Gas-liquid mass transfer in unbaffled dual-impeller mixers. Chem. Eng. Sci., 63, 1636–1647. DOI: 10.1016/j.ces.2007.11.028.10.1016/j.ces.2007.11.028Open DOISearch in Google Scholar

13. Babalona, E., Bahouma, D., Tagia, S., Pantouflas, E. & Markopoulos, J. (2005). Power consumption in dual impeller gas-liquid contactors: impeller spacing, gas flow rate, and viscosity effects. Chem. Eng. Technol. 28(7), 802–806. DOI: 10.1002/ceat.200407160.10.1002/ceat.200407160Open DOISearch in Google Scholar

14. Bouaifi, M. & Rouston, M. (2001). Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Process. 40, 87–95. DOI: 10.1016/S0255-2701(00)00128-8.10.1016/S0255-2701(00)00128-8Open DOISearch in Google Scholar

15. Xie M., Xia J., Zhou Z., Chu J., Zhuang Y. & Zhang S. (2014). Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res., 53, 5941–5953.10.1021/ie400831sSearch in Google Scholar

16. Major-Godlewska, M. & Karcz, J. (2003). Gas hold-up and power consumption for gas-liquid system agitated in a stirred tank equipped with vertical coil. Chem. Pap., 57(6) 432–437.Search in Google Scholar

17. Major-Godlewska, M. & Karcz, J. (2011). Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap., 65(2), 132–138. DOI: 10.2478/s11696-010-0080-0.10.2478/s11696-010-0080-0Open DOISearch in Google Scholar

18. Machoň, V., Vlček, J. & Kudrna, V. (1978). Gas hold-up in agitated aqueous solutions of strong inorganic salts. Coll. Czech. Chem. Commun. 43, 593–603. dx.doi.org/10.1135/cccc19780593.10.1135/cccc19780593Open DOISearch in Google Scholar

19. Lee, J.C. & Meyrick, D.L. (1970). Gas-liquid interfacial areas in salt solutions in an agitated tank. Trans. Inst. Chem. Eng. 48, 37–45.Search in Google Scholar

20. Cudak, M. (2014). Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions., Chem. Process. Eng. 35(1), 97–107. DOI: 10.2478/cpe-2014-0007.10.2478/cpe-2014-0007Open DOISearch in Google Scholar

21. Havas, G., Deak, A. & Sawinsky, J. (1982). Heat transfer coefficients in an agitated vessels using vertical tube baffles. Chem. Eng. J. 28, 161–165.10.1016/0300-9467(82)80007-5Open DOISearch in Google Scholar

22. Man, K.L., Hughes, W. & Moody, G.W. (1991). The effect of rheology and baffle design on the power and heat transfer performance in stirred vessels using vertical tubular baffles. 7th European Congress on Mixing, 18–20 september 1991 (pp. 321–332). Brugge, Belgium.Search in Google Scholar

23. Karcz, J. & Major, M. (2001). Experimental studies of heat transfer in an agitated vessel equipped with vertical tubular coil. Inż. Chem. Proc. 22, 445–459.Search in Google Scholar

24. Karcz, J. & Major, M. (2001). Badania wymiany ciepła w mieszalniku z wężownicą pionową. Inż. Chem. i Proc., 22, 3C, 639–644.Search in Google Scholar

25. Kiełbus-Rąpała, A. & Karcz, J. (2012). Experimental analysis of the hydrodynamics of a three-phase system in a vessel with two impellers. Chem. Pap., 66(6), 574–582. DOI: 10.2478/s11696-012-0157-z.10.2478/s11696-012-0157-zOpen DOISearch in Google Scholar

26. Kembłowski, Z. (1973). Reometria płynów nieniutonowskich, WNT, Warszawa.Search in Google Scholar

27. Adamiak, R. (2005). Experimental studies of conditions for gas dispersion in liquid in the stirred tank on different scale. PhD Thesis, Politechnika Szczecińska, Szczecin (in Polish).Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering